Last updated: 2021-12-17

Checks: 6 1

Knit directory: yeln_2019_spermtyping/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190102) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 395a4f8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .config/
    Ignored:    analysis/.Rhistory
    Ignored:    data/F21FTSAPHT0641MOUobtfR/

Untracked files:
    Untracked:  .DS_Store
    Untracked:  .Renviron
    Untracked:  .bulkDNAseq_BGI-extra.snk.swp
    Untracked:  .cache/
    Untracked:  .snakemake/
    Untracked:  .theano/
    Untracked:  2021-07-13_scRNA-seq-analysis-of-sperm-cells-from-Fancm-mutant-and-Fancm-wildtype-mice.Rmd
    Untracked:  2021-07-13_scRNA-seq-analysis-of-sperm-cells-from-Fancm-mutant-and-Fancm-wildtype-mice_files/
    Untracked:  2021-09-10_BC1F1-copy-number-analysis.Rmd
    Untracked:  2021-10-27_GvizDiagnostic.Rmd
    Untracked:  2021-10-27_GvizDiagnostic.html
    Untracked:  2021-10-27_GvizDiagnostic.log
    Untracked:  2021-10-27_GvizDiagnostic.tex
    Untracked:  Rplots.pdf
    Untracked:  Snakefile_AFtracks.log.out
    Untracked:  Snakefile_BC1F1BGIseq2021.snk
    Untracked:  Snakefile_DNAseq-BGIseq-bc1f1-hmm-2021.log.out
    Untracked:  Snakefile_DNAseq-BGIseq-bc1f1-hmm-extra-11.log.out
    Untracked:  Snakefile_DNAseq-BGIseq-bcf-hmm.log.out
    Untracked:  Snakefile_DNAseq-F2F3-hmm.snk.log.out
    Untracked:  Snakefile_DNAseq-agrf-hmm.snk.log.out
    Untracked:  Snakefile_DNAseq-mos.log.out
    Untracked:  Snakefile_DNAseqF2F3.log.out
    Untracked:  Snakefile_alignATACseq.log.out
    Untracked:  Snakefile_bulkATACseq.snk
    Untracked:  Snakefile_bulkBGILowTrans.log.out
    Untracked:  Snakefile_bulkagrcountCO.log.out
    Untracked:  Snakefile_bulkagrf.log.out
    Untracked:  Snakefile_bulkagrfLowTrans.log.out
    Untracked:  Snakefile_bulkagrfQC.log.out
    Untracked:  Snakefile_bulkagrfSegRatio.log.out
    Untracked:  Snakefile_bulkagrffilterCO.log.out
    Untracked:  Snakefile_bulkbc1f1-2021.log.out
    Untracked:  Snakefile_bulkbgi.log.out
    Untracked:  Snakefile_bulkbgifilterCO.log.out
    Untracked:  Snakefile_cellChrSNP.err.log.out
    Untracked:  Snakefile_extraBulkbgi.log.out
    Untracked:  Snakefile_plotDiagnosticAFtracks.snk
    Untracked:  Snakefile_runCNVcaller.snk
    Untracked:  Snakefile_runGCNV.log.out
    Untracked:  Snakefile_runHMMCNV.log.out
    Untracked:  Snakefile_runcsnp-rnaseq.snk
    Untracked:  Snakefile_split.fq.out
    Untracked:  Snakefile_tag-fastq-bc.snk
    Untracked:  Snakefile_tag.err.log.out
    Untracked:  W12/
    Untracked:  WC_522/
    Untracked:  WC_526/
    Untracked:  WC_CNV_42/
    Untracked:  WC_CNV_42_firstBatch/
    Untracked:  WC_CNV_43/
    Untracked:  WC_CNV_43_firstBatch/
    Untracked:  WC_CNV_44/
    Untracked:  WC_CNV_44_firstBatch/
    Untracked:  WC_CNV_53/
    Untracked:  WC_CNV_53_firstBatch/
    Untracked:  WC_CNV_md5.txt
    Untracked:  WC_Sp/
    Untracked:  analysis/2021-01-14_lowCov-DNAseqAGRF-coverage.Rmd
    Untracked:  analysis/2021-07-13_scRNA-seq analysis of sperm cells from Fancm-mutant and Fancm-wildtype mice.Rmd
    Untracked:  analysis/2021-07-14_ATACseq-coverage.Rmd
    Untracked:  analysis/2021-07-26_BC1F1-SampleCNVs.Rmd
    Untracked:  analysis/2021-10-27_GvizDiagnostic.Rmd
    Untracked:  analysis/2021-11-07_BinnedGenDistComparison.Rmd
    Untracked:  analysis/2021-11-19_Permutation-testing-genetic-map-diferences-in-genotype-group.Rmd
    Untracked:  analysis/nstates.png
    Untracked:  bc1f1_chr19bin_state_gr.rds
    Untracked:  code/bc1f1-af-co-tracks.R
    Untracked:  code/binom-seg-test-scCNV.R
    Untracked:  code/chromosomeCODensityLinearRegression.R
    Untracked:  code/investigateSegsCNV.R
    Untracked:  code/run_sccomp.R
    Untracked:  code/scCNV_CO_SNP_density.R
    Untracked:  dag-scCNV.svg
    Untracked:  dag.svg
    Untracked:  data/10xCNV/
    Untracked:  data/737K-crdna-v1.txt
    Untracked:  data/All_data_May_to_August_2019.xlsx
    Untracked:  data/BC1F1-bgi-2021.txt
    Untracked:  data/BC1F1-bgi-extra_2021/
    Untracked:  data/BC1F1-bgi-extra_2021_samplemeta.txt
    Untracked:  data/BC1F1-bgi-fq-path_2021/
    Untracked:  data/F20FTSAPHT0350_MUSyfqR_samplemeta.txt
    Untracked:  data/F2f3_samplemeta.txt
    Untracked:  data/agrfBulkDNA/
    Untracked:  data/agrf_samplefqdir.txt
    Untracked:  data/agrf_samplemeta.txt
    Untracked:  data/atac_seq/
    Untracked:  data/cellSNP_W12-time2.txt/
    Untracked:  data/convertWIG2bed.sh
    Untracked:  data/convertWIG2bed_2.sh
    Untracked:  data/fancm_mice/
    Untracked:  data/fancm_tubule_blinded_counts.xlsx
    Untracked:  data/genLn.sh
    Untracked:  data/hg19.gc5Base.txt.gz
    Untracked:  data/ibuprofen_fancm_bl6_tubule_counts.xlsx
    Untracked:  data/mm10.100k.bed
    Untracked:  data/mm10.100k.meanGC.bed
    Untracked:  data/mm10.100k.meanGC.bed.bk
    Untracked:  data/mm10.100k.meanGC.chr1.bed
    Untracked:  data/mm10.100k.meanGC.chr3.bed
    Untracked:  data/mm10.100k.sorted.bed
    Untracked:  data/mm10.1m.bed
    Untracked:  data/mm10.1m.meanGC.bed
    Untracked:  data/mm10.1m.meanGC.chr1.bed
    Untracked:  data/mm10.1m.meanGC.chr10.bed
    Untracked:  data/mm10.1m.meanGC.chr11.bed
    Untracked:  data/mm10.1m.meanGC.chr12.bed
    Untracked:  data/mm10.1m.meanGC.chr13.bed
    Untracked:  data/mm10.1m.meanGC.chr14.bed
    Untracked:  data/mm10.1m.meanGC.chr15.bed
    Untracked:  data/mm10.1m.meanGC.chr16.bed
    Untracked:  data/mm10.1m.meanGC.chr17.bed
    Untracked:  data/mm10.1m.meanGC.chr18.bed
    Untracked:  data/mm10.1m.meanGC.chr19.bed
    Untracked:  data/mm10.1m.meanGC.chr2.bed
    Untracked:  data/mm10.1m.meanGC.chr3.bed
    Untracked:  data/mm10.1m.meanGC.chr4.bed
    Untracked:  data/mm10.1m.meanGC.chr5.bed
    Untracked:  data/mm10.1m.meanGC.chr6.bed
    Untracked:  data/mm10.1m.meanGC.chr7.bed
    Untracked:  data/mm10.1m.meanGC.chr8.bed
    Untracked:  data/mm10.1m.meanGC.chr9.bed
    Untracked:  data/mm10.1m.sorted.bed
    Untracked:  data/mm10.bed
    Untracked:  data/mm10.gc5Base.bed
    Untracked:  data/mm10.gc5Base.chr1.bed
    Untracked:  data/mm10.gc5Base.chr10.bed
    Untracked:  data/mm10.gc5Base.chr11.bed
    Untracked:  data/mm10.gc5Base.chr12.bed
    Untracked:  data/mm10.gc5Base.chr13.bed
    Untracked:  data/mm10.gc5Base.chr14.bed
    Untracked:  data/mm10.gc5Base.chr15.bed
    Untracked:  data/mm10.gc5Base.chr16.bed
    Untracked:  data/mm10.gc5Base.chr17.bed
    Untracked:  data/mm10.gc5Base.chr18.bed
    Untracked:  data/mm10.gc5Base.chr19.bed
    Untracked:  data/mm10.gc5Base.chr2.bed
    Untracked:  data/mm10.gc5Base.chr3.bed
    Untracked:  data/mm10.gc5Base.chr4.bed
    Untracked:  data/mm10.gc5Base.chr5.bed
    Untracked:  data/mm10.gc5Base.chr6.bed
    Untracked:  data/mm10.gc5Base.chr7.bed
    Untracked:  data/mm10.gc5Base.chr8.bed
    Untracked:  data/mm10.gc5Base.chr9.bed
    Untracked:  data/mm10.gc5Base.wib
    Untracked:  data/mm10.gc5Base.wig.gz
    Untracked:  data/mm10.gc5Base.wigVarStep.gz
    Untracked:  data/public_dataset/
    Untracked:  data/rawNames.txt
    Untracked:  data/slurm-59654.out
    Untracked:  data/slurm-59655.out
    Untracked:  data/slurm-59670.out
    Untracked:  data/slurm-82444.out
    Untracked:  data/slurm-82445.out
    Untracked:  docs/figure/2020-10-20_BulkDNASamples-CO-genetic-dist.Rmd/
    Untracked:  docs/site_libs/accessible-code-block-0.0.1/
    Untracked:  envs/demultiplex.yml
    Untracked:  envs/env_bulkDNA.yml
    Untracked:  envs/mosdepth.yaml
    Untracked:  fastp.html
    Untracked:  fastp.json
    Untracked:  job_tracking/
    Untracked:  multipage.pdf
    Untracked:  myplot.png
    Untracked:  nohup.out
    Untracked:  nstates.png
    Untracked:  nstates1.png
    Untracked:  old_Renv
    Untracked:  output/.DS_Store
    Untracked:  output/10xCNV/
    Untracked:  output/atac_seq/
    Untracked:  output/bcf/
    Untracked:  output/bulkDNAseq/
    Untracked:  output/bulkDNAseq_BC1F1BGI2021/
    Untracked:  output/bulkDNAseq_BGI/
    Untracked:  output/bulkDNAseq_F2F3/
    Untracked:  output/bulkDNAseq_agrf/
    Untracked:  output/figures/
    Untracked:  output/gCNV/
    Untracked:  output/outputR/
    Untracked:  output/scCNV/
    Untracked:  output/scRNA/
    Untracked:  references/BC1F1_samples-2020-07-08.xlsx
    Untracked:  references/BC1F1_samples-2020-10-20.xlsx
    Untracked:  references/BC1F1_summary.xlsx
    Untracked:  references/Copy of crossover_count.csv
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.WC_522_het.vcf.gz
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.WC_522_het.vcf.gz.csi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.WC_522_het.vcf.gz.tbi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.pos.only.tsv
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.vcf.gz
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.vcf.gz.csi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.vcf.gz.tbi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.txt
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.gz
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.gz.csi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.stat
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.vcf.gz
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.vcf.gz.csi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.gz
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.gz.csi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.gz.tbi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.idx
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.stat
    Untracked:  references/cellranger-ref-dna-mm10/
    Untracked:  references/cellranger-ref-mm10/
    Untracked:  references/chrs.map
    Untracked:  references/chrs_r.map
    Untracked:  references/col1
    Untracked:  references/col2
    Untracked:  references/k36.umap.bed
    Untracked:  references/k36.umap.bed.idx
    Untracked:  references/mm10_contig_ploidy_priors.tsv
    Untracked:  references/scRNAseq_gene_sets.xlsx
    Untracked:  references/wasp/
    Untracked:  retag-0-mis.log.txt
    Untracked:  runCountCB.out
    Untracked:  run_countcb.snk
    Untracked:  runsCNV.out
    Untracked:  runsCsnp.out
    Untracked:  split.log.txt
    Untracked:  sslurm-42367.out
    Untracked:  submit-AlignBulkATAC.sh
    Untracked:  submit-runAlignBC1F1BGI.sh
    Untracked:  submit-runBulkDNAagrf.sh
    Untracked:  submit-runBulkDNAbgi.sh
    Untracked:  submit-runBulkDNAbgiExtra.sh
    Untracked:  submit-runCNV.sh
    Untracked:  submit-runCTCB.sh
    Untracked:  submit-runDNAseq-BGIseq-bc1f1-hmm-2021.sh
    Untracked:  submit-runDNAseq-BGIseq-bc1f1-hmm-Extra-2021.sh
    Untracked:  submit-runDNAseq-BGIseq-bcf-hmm.sh
    Untracked:  submit-runDNAseqF2F3.sh
    Untracked:  submit-runHMMBulkAGRF.sh
    Untracked:  submit-runHMMBulkAGRFBCF.sh
    Untracked:  submit-runHMMF2F3.sh
    Untracked:  submit-runMos.sh
    Untracked:  submit-runPlotAFBC1F1.sh
    Untracked:  submit-runSNK-cellchrsnp.sh
    Untracked:  submit-runSNK-hmm-CNV.sh
    Untracked:  submit-runcsnp.sh
    Untracked:  submit-rungCNV.sh
    Untracked:  submit-sbatch.sh
    Untracked:  test.png
    Untracked:  theano_base/
    Untracked:  tmp/
    Untracked:  yeln_2019_spermtyping.Rproj

Unstaged changes:
    Modified:   .gitignore
    Modified:   CITATION
    Modified:   LICENSE
    Modified:   Snakefile_DNAseq-BGIseq-bcf-hmm.snk
    Modified:   Snakefile_DNAseq-agrf-hmm.snk
    Modified:   Snakefile_DNAseq-chr-plot.snk
    Modified:   Snakefile_HMM-scCNV
    Modified:   Snakefile_bcf
    Modified:   Snakefile_bulkDNAseq-mos.snk
    Modified:   Snakefile_bulkDNAseq.snk
    Modified:   Snakefile_cluster
    Modified:   Snakefile_gatk
    Modified:   Snakefile_remap
    Modified:   _workflowr.yml
    Modified:   analysis/2019-04-13_expl-data-analysis_2019-04-12-10x-run.Rmd
    Modified:   analysis/2020-01-02_W12_smcelss_C9_bcftools.Rmd
    Modified:   analysis/2020-01-03_W11-small-cells.Rmd
    Modified:   analysis/2020-01-03_W11-vartrix-diploid.Rmd
    Modified:   analysis/2020-01-03_W11-vartrix.Rmd
    Modified:   analysis/2020-01-03_W11_get_smcells.Rmd
    Modified:   analysis/2020-01-03_W12-vartrix.Rmd
    Modified:   analysis/2020-05-01_10xCNV-summary.Rmd
    Modified:   analysis/2020-05-07_WC-522-bulk-sperm-vcf.Rmd
    Modified:   analysis/2020-05-11_WC-522-filtered-variants-single-cell.Rmd
    Modified:   analysis/2020-05-15_WC_522-wasp-Filtering.Rmd
    Modified:   analysis/2020-05-15_barcode-calling-10xCNV.Rmd
    Modified:   analysis/2020-05-19_SNP-gaps-and-distribution-analysis.Rmd
    Modified:   analysis/2020-05-25_FVB-BL6-Control-cell-for-estimating-HMM-pars.Rmd
    Modified:   analysis/2020-06-02_WC-522-nocell-group5.Rmd
    Modified:   analysis/2020-06-02_mix-haploid-cells.Rmd
    Modified:   analysis/2020-06-15_lowCov-DNAseq-summary-stats.Rmd
    Modified:   analysis/2020-06-16_detect-CO-bulkDNAseq-1X.Rmd
    Modified:   analysis/2020-06-17_scDNA-viterbi-CO-detection.Rmd
    Modified:   analysis/2020-07-06_bulk-samples-theta-estimate.Rmd
    Modified:   analysis/2020-07-14_agrf-genotyping-markers.Rmd
    Modified:   analysis/2020-07-27_state-bias-diagnosis.Rmd
    Modified:   analysis/2020-08-13_Marker-based-genetic-map.Rmd
    Modified:   analysis/2020-08-14_Genetic-map-hot-spots-bulk-BGI.Rmd
    Modified:   analysis/2020-08-18_total-genetic-dist-genome.Rmd
    Modified:   analysis/2020-10-06_scCNV-CO-genetic-dist.Rmd
    Modified:   analysis/2020-10-20_BulkDNASamples-CO-genetic-dist.Rmd
    Modified:   analysis/2020-10-20_agrfBulkDNASamples-WT-HET-CO-genetic-dist.Rmd
    Modified:   analysis/2020-11-24_BulkSamples-CrossoverAnalysisUpdates.Rmd
    Modified:   analysis/2020-7-22_detectCO-BulkDNA-corrected.Rmd
    Modified:   analysis/2021-02-09_F2F3-samples-CO-analysis.Rmd
    Modified:   analysis/2021-02-22_Investigation-Female-HET.Rmd
    Modified:   analysis/2021-04-05_GIMs-variants.Rmd
    Modified:   analysis/2021-06-28_BulkBC1F1-samples.Rmd
    Modified:   analysis/2021-06-29_exploring-data-batches-bulk-bc1f1-samples.Rmd
    Modified:   analysis/2021-07-05_Filters-Exploration-Bulk-BC1F1.Rmd
    Modified:   analysis/2021-07-21_FANCM-crossovers-integrative-analysis.Rmd
    Modified:   analysis/2021-07-23_FANCM-manuscript-figures-2.Rmd
    Modified:   analysis/2021-07-23_FANCM-manuscript-figures.Rmd
    Modified:   analysis/2021-07-25_FANCM-manuscript-figures-3.Rmd
    Modified:   analysis/2021-10-11_sccomp-compositional-testing-fancm-tubules.Rmd
    Modified:   analysis/2021-10-13_FANCM-manuscript-Crossovers-genomic-features.Rmd
    Modified:   analysis/2021-10-24_FancmCrossoverOutlierChromosome.Rmd
    Modified:   analysis/2021-11-01_hotspots-Fancm.Rmd
    Modified:   analysis/SNPs_hp_dp_cells.pptx
    Modified:   analysis/W11_W12_pooled_clustering.Rmd
    Modified:   analysis/W11_clustering.Rmd
    Modified:   analysis/W11_further_analysis.Rmd
    Modified:   analysis/W12_clustering.Rmd
    Modified:   analysis/about.Rmd
    Modified:   analysis/expl_W12_C28_GATK_AF_plot.Rmd
    Modified:   analysis/expl_W12_C28_cellsnp_AF_plot.Rmd
    Modified:   analysis/expl_W12_C2_cellsnp_AF_plot.Rmd
    Modified:   analysis/expl_W12_GATK_AF_plot.Rmd
    Modified:   analysis/expl_W12_bcftools_AF_plot.Rmd
    Modified:   analysis/expl_W12_bcftools_AF_plot_dp.Rmd
    Modified:   analysis/expl_W12_cellsnp_AF_plot.Rmd
    Modified:   analysis/license.Rmd
    Modified:   analysis/scRNAseq-analysis-outline.Rmd
    Modified:   bulkDNAseq_BGI-30X.snk
    Modified:   code/README.md
    Modified:   code/badSampleBulkDNAseq.R
    Modified:   code/bulk_BL6_FVB_rate0_estimate.R
    Modified:   code/cal_ref_ratio.R
    Modified:   code/cc_score.R
    Modified:   code/cellCO-QCControl.R
    Modified:   code/cellQualityCheck.R
    Modified:   code/cellQualityCheck.old.R
    Modified:   code/checkCoverageBulkseq.R
    Modified:   code/checkF2F3trios.R
    Modified:   code/checkF2F3triosLtrans.R
    Modified:   code/check_co.R
    Modified:   code/cluster.R
    Modified:   code/combine_calqc.R
    Modified:   code/combine_cluster.R
    Modified:   code/combine_crt_sce.R
    Modified:   code/combine_filter_qcdb.R
    Modified:   code/combine_findmarker.R
    Modified:   code/combine_monocle.R
    Modified:   code/combine_pca.R
    Modified:   code/combine_sctransnorm.R
    Modified:   code/combine_vis.R
    Modified:   code/controlCell-fvbbl6.R
    Modified:   code/controlCell-pEstimate.R
    Modified:   code/correctLowConfCO.R
    Modified:   code/count_cb.nim
    Modified:   code/cumGeneticDistance.R
    Modified:   code/def_viterbi.R
    Modified:   code/detect_noisy_cells.R
    Modified:   code/dr_pca.R
    Modified:   code/expl_bined_Ave.R
    Modified:   code/fancm_reads.R
    Modified:   code/filterStateAndCO.R
    Modified:   code/findLowConfCO.R
    Modified:   code/find_segment_length.R
    Modified:   code/findmarker.R
    Modified:   code/getMarkerBasedCOs.R
    Modified:   code/impute-chr-bin-state-bc1f1.R
    Modified:   code/markerStateAggr.R
    Modified:   code/nohup.out
    Modified:   code/norm.R
    Modified:   code/overlay_fun.R
    Modified:   code/plotBadMarkersBulk.R
    Modified:   code/plotCOregion.R
    Modified:   code/plotGeneticMap.R
    Modified:   code/plotHotRegion.R
    Modified:   code/plot_bp_bin-AF.R
    Modified:   code/plot_chr_co_bulkDNA.R
    Modified:   code/plot_corrected_state.R
    Modified:   code/plot_roh.py
    Modified:   code/rate_estimator.R
    Modified:   code/renamer.py
    Modified:   code/renamer_bam.nim
    Modified:   code/report_summary.Rmd
    Modified:   code/retag.py
    Modified:   code/retag_bam.nim
    Modified:   code/runVb-scCNV.R
    Modified:   code/run_viterbi.R
    Modified:   code/run_viterbi_F2F3.R
    Modified:   code/run_viterbi_bulkSample_chr.R
    Modified:   code/run_viterbi_cell_chr.R
    Modified:   code/scCNVcountCO.R
    Modified:   code/split_bam.nim
    Modified:   code/subsampleAGRF.R
    Modified:   code/vartrix.sh
    Modified:   code/viterbi_example_chr_cell.R
    Modified:   data/README.md
    Modified:   docs/.nojekyll
    Modified:   docs/2020-01-03_W11-small-cells.html
    Modified:   docs/Progress_report_yeln.html
    Modified:   docs/W11_W12_pooled_clustering.html
    Modified:   docs/W11_clustering.html
    Modified:   docs/W11_further_analysis.html
    Modified:   docs/W12_clustering.html
    Modified:   docs/W12_further_analysis.html
    Modified:   docs/about.html
    Modified:   docs/assets/F1_gametes.PNG
    Modified:   docs/assets/SplitNCigarReads.png
    Modified:   docs/assets/W11double.pdf
    Modified:   docs/assets/W12double.pdf
    Modified:   docs/assets/singleCell3pv2.PNG
    Modified:   docs/expl_W12_C28_GATK_AF_plot.html
    Modified:   docs/expl_W12_C28_cellsnp_AF_plot.html
    Modified:   docs/expl_W12_C2_cellsnp_AF_plot.html
    Modified:   docs/expl_W12_GATK_AF_plot.html
    Modified:   docs/expl_W12_bcftools_AF_plot.html
    Modified:   docs/expl_W12_bcftools_AF_plot_dp.html
    Modified:   docs/expl_W12_cellsnp_AF_plot.html
    Modified:   docs/expl_bcftools_dp_dedb_W12.html
    Modified:   docs/figure/Progress_report_yeln.Rmd/pressure-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-3.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-4.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_sample-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_sample-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_sample-3.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/c4_c28-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/cluster_composition-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/clustree-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/hm-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-10.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-11.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-12.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-13.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-14.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-15.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-16.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-3.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-4.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-5.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-6.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-7.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-8.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-9.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-3.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-4.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-5.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-6.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster_by_sample-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster_by_sample-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_fltqc-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_fltqc-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_hvg-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_marker_plot-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_pc_select-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_pca_visulisation-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_raw_qc-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_raw_qc-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/unnamed-chunk-4-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_cluster-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_cluster-2.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_cluster-3.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_cluster-4.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-10.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-11.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-12.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-13.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-14.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-15.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-2.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-3.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-4.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-5.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-6.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-7.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-8.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-9.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_fltqc-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_fltqc-2.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_hvg-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_marker_plot-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_pc_select-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_pca_visulisation-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_raw_qc-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_raw_qc-2.png
    Modified:   docs/figure/W12_clustering.Rmd/ab_genes-1.png
    Modified:   docs/figure/W12_clustering.Rmd/ab_genes-2.png
    Modified:   docs/figure/W12_clustering.Rmd/boxplot_chrYgenes-1.png
    Modified:   docs/figure/W12_clustering.Rmd/plotExpr-1.png
    Modified:   docs/figure/W12_clustering.Rmd/plotExpr-2.png
    Modified:   docs/figure/W12_clustering.Rmd/plotExpr-3.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-1.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-10.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-11.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-12.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-13.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-14.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-15.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-2.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-3.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-4.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-5.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-6.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-7.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-8.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-9.png
    Modified:   docs/figure/W12_clustering.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/W12_clustering.Rmd/unnamed-chunk-3-1.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/genotyped_AF-1.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/genotyped_AF-2.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/no_snps-2.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/unnamed-chunk-3-1.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/unnamed-chunk-3-2.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/colr_dp-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-2.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-3.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-4.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-5.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-6.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/rm_all_hets-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/unnamed-chunk-2-2.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/unnamed-chunk-4-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-2.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-3.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-4.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-5.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-6.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/rm_all_hets-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/rm_all_hets_dp-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-3-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-3-2.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-5-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/genotyped_AF-1.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/genotyped_AF-2.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/no_snps-2.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/unnamed-chunk-3-1.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/unnamed-chunk-3-2.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/all_bcf_cells-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/all_bcf_cells-2.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/colr_snp_dp-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/filter_qual-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/filter_qual-2.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/genotyped-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/genotyped-2.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/colr_snp_dp-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/filter_qual-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/filter_qual-2.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/genotyped-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/genotyped-2.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/filterSNPs-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/filterSNPs-2.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-2.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-3.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-4.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-5.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-6.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-1-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-4-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-5-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/genotyped-1.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/genotyped-2.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/unnamed-chunk-1-1.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/unnamed-chunk-2-2.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/whole_genome_af-1.png
    Modified:   docs/index.html
    Modified:   docs/license.html
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.css.map
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.css.map
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/cerulean.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/cosmo.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/darkly.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/flatly.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Lato.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/LatoBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/LatoItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/NewsCycle.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/NewsCycleBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSans.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansBoldItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansLightItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Raleway.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RalewayBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Roboto.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoMedium.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansPro.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Ubuntu.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/journal.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/lumen.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/paper.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/readable.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/sandstone.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/simplex.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/spacelab.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/united.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/yeti.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.eot
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.svg
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.woff
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.woff2
    Modified:   docs/site_libs/bootstrap-3.3.5/js/bootstrap.js
    Modified:   docs/site_libs/bootstrap-3.3.5/js/bootstrap.min.js
    Modified:   docs/site_libs/bootstrap-3.3.5/js/npm.js
    Modified:   docs/site_libs/bootstrap-3.3.5/shim/html5shiv.min.js
    Modified:   docs/site_libs/bootstrap-3.3.5/shim/respond.min.js
    Modified:   docs/site_libs/font-awesome-5.1.0/css/all.css
    Modified:   docs/site_libs/font-awesome-5.1.0/css/v4-shims.css
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.woff2
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.woff2
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.woff2
    Modified:   docs/site_libs/jquery-1.11.3/jquery.min.js
    Modified:   docs/site_libs/jqueryui-1.11.4/README
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_444444_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_555555_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_777620_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_777777_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_cc0000_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_ffffff_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/index.html
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.js
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.min.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.min.js
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.structure.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.structure.min.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.theme.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.theme.min.css
    Modified:   docs/site_libs/navigation-1.1/codefolding.js
    Modified:   docs/site_libs/navigation-1.1/sourceembed.js
    Modified:   docs/site_libs/navigation-1.1/tabsets.js
    Modified:   docs/site_libs/tocify-1.9.1/jquery.tocify.css
    Modified:   docs/site_libs/tocify-1.9.1/jquery.tocify.js
    Modified:   org/README.md
    Modified:   output/README.md
    Modified:   references/README.md
    Modified:   resources/README.md
    Modified:   yeln.bib

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/2021-07-21_FANCM-crossovers-integrative-analysis.Rmd) and HTML (public/2021-07-21_FANCM-crossovers-integrative-analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 01458d7 rlyu 2021-10-01 update integration analysis
html 01458d7 rlyu 2021-10-01 update integration analysis
Rmd 9a3ae70 rlyu 2021-08-05 adding segregation analysis results
html 9a3ae70 rlyu 2021-08-05 adding segregation analysis results

Marker segregation

Test segregation bias for gametes.

[R scripts for preparing inputs for this report at: code/impute-chr-bin-state-scCNV.R]

Per sample: WC_522

This is done by taking the crossover results and work backwards to find the state for chromosome bins so that missing markers’ states are imputed. This helps to reduce the unreliable results for staring and ending bins of chromosomes.

Chr1

sampleName <- "WC_522"
chrName <- "chr1"
bin_state_gr <- readRDS(paste0("./output/outputR/analysisRDS/",sampleName,"_",
                          chrName,"bin_state_gr.rds"))

The chromosomes have been binned using size of 1e7.

bin_state_gr[1:4,1:3]
GRanges object with 4 ranges and 3 metadata columns:
      seqnames            ranges strand | TGCGGGTGTATTGAAG-1 GTGCGGTGTGCTATTG-1
         <Rle>         <IRanges>  <Rle> |        <character>        <character>
  [1]     chr1         1-9970630      * |                 s2                 s1
  [2]     chr1  9970631-19941259      * |                 s2                 s1
  [3]     chr1 19941260-29911888      * |                 s2                 s1
  [4]     chr1 29911889-39882517      * |                 s2                 s1
      ATCTACTTCTAGCCTC-1
             <character>
  [1]                 s2
  [2]                 s2
  [3]                 s2
  [4]                 s2
  -------
  seqinfo: 19 sequences from an unspecified genome
df <- mcols(bin_state_gr)
data.frame(df,check.names = FALSE) %>% dplyr::mutate(bin_id = seq(nrow(df))) %>% 
  tidyr::pivot_longer(cols = colnames(mcols(bin_state_gr))) %>%
  ggplot()+geom_point(aes(y = bin_id, x = name,color = value))+theme_bw()+
  theme(axis.text.x = element_blank())

Test for any imbalance

Use binomial.test for testing whether proportion is 0.5

s1_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s1",na.rm=T)
s2_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s2",na.rm=T)
bins_pvals <- lapply(seq(s1_counts), function(i){
  btest <- binom.test(c(s1_counts[i],s2_counts[i]))
  btest$p.value
})
plot_df <- data.frame(s1_count = s1_counts,
                      s2_count = s2_counts,
                      bin_id = seq(length(bins_pvals)),
                      biom_pvals = unlist(bins_pvals),
                      fdr = p.adjust(unlist(bins_pvals),method = "fdr"))
plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
  geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",stat = "identity")+
  geom_text(aes(x = bin_id,y=70, label = round(fdr,2)))+
  xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle(sampleName)

Version Author Date
9a3ae70 rlyu 2021-08-05

Produce the plots for all chrs

sampleName <- "WC_522"
plots_list <- list()
for(chrName in paste0("chr",1:19)){
  bin_state_gr <- readRDS(paste0("./output/outputR/analysisRDS/",sampleName,"_",
                          chrName,"bin_state_gr.rds"))

s1_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s1",na.rm=T)
s2_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s2",na.rm=T)
bins_pvals <- lapply(seq(s1_counts), function(i){
  btest <- binom.test(c(s1_counts[i],s2_counts[i]))
  btest$p.value
})

plot_df <- data.frame(s1_count = s1_counts,
                      s2_count = s2_counts,
                      bin_id = seq(length(bins_pvals)),
                      biom_pvals = unlist(bins_pvals),
                      fdr = p.adjust(unlist(bins_pvals),method = "fdr"))

p <- plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
  geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",
           stat = "identity")+
  geom_text(aes(x = bin_id,y=70, label = round(fdr,2)))+
  xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle(sampleName)
plots_list[[chrName]] <- p+guides(fill = "none" )
} 
mChrThresPlots <- marrangeGrob(plots_list, nrow=3, ncol=2)
mChrThresPlots

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

WC_526

sampleName <- "WC_526"
plots_list <- list()
for(chrName in paste0("chr",1:19)){
  bin_state_gr <- readRDS(paste0("./output/outputR/analysisRDS/",sampleName,"_",
                          chrName,"bin_state_gr.rds"))

s1_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s1",na.rm=T)
s2_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s2",na.rm=T)
bins_pvals <- lapply(seq(s1_counts), function(i){
  btest <- binom.test(c(s1_counts[i],s2_counts[i]))
  btest$p.value
})

plot_df <- data.frame(s1_count = s1_counts,
                      s2_count = s2_counts,
                      bin_id = seq(length(bins_pvals)),
                      biom_pvals = unlist(bins_pvals),
                      fdr = p.adjust(unlist(bins_pvals),method = "fdr"))

p <- plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
  geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",
           stat = "identity")+
  geom_text(aes(x = bin_id,y=max(c(s1_counts,s2_counts)), label = round(fdr,2)))+
  xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle(sampleName)
plots_list[[chrName]] <- p+guides(fill = "none" )
} 
mChrThresPlots <- marrangeGrob(plots_list, nrow=3, ncol=2)
mChrThresPlots

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

WC_CNV_44

Produce the plots for all chrs

sampleName <- "WC_CNV_44"
plots_list <- list()
for(chrName in paste0("chr",1:19)){
  bin_state_gr <- readRDS(paste0("./output/outputR/analysisRDS/",sampleName,"_",
                          chrName,"bin_state_gr.rds"))

s1_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s1",na.rm=T)
s2_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s2",na.rm=T)
bins_pvals <- lapply(seq(s1_counts), function(i){
  btest <- binom.test(c(s1_counts[i],s2_counts[i]))
  btest$p.value
})

plot_df <- data.frame(s1_count = s1_counts,
                      s2_count = s2_counts,
                      bin_id = seq(length(bins_pvals)),
                      biom_pvals = unlist(bins_pvals),
                      fdr = p.adjust(unlist(bins_pvals),method = "fdr"))

p <- plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
  geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",
           stat = "identity")+
  geom_text(aes(x = bin_id,y=max(c(s1_counts,s2_counts)), label = round(fdr,2)))+
  xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle(sampleName)
plots_list[[chrName]] <- p+guides(fill = "none" )
} 
mChrThresPlots <- marrangeGrob(plots_list, nrow=3, ncol=2)
mChrThresPlots

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

WC_CNV_42

sampleName <- "WC_CNV_42"
plots_list <- list()
for(chrName in paste0("chr",1:19)){
  bin_state_gr <- readRDS(paste0("./output/outputR/analysisRDS/",sampleName,"_",
                          chrName,"bin_state_gr.rds"))

s1_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s1",na.rm=T)
s2_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s2",na.rm=T)
bins_pvals <- lapply(seq(s1_counts), function(i){
  btest <- binom.test(c(s1_counts[i],s2_counts[i]))
  btest$p.value
})

plot_df <- data.frame(s1_count = s1_counts,
                      s2_count = s2_counts,
                      bin_id = seq(length(bins_pvals)),
                      biom_pvals = unlist(bins_pvals),
                      fdr = p.adjust(unlist(bins_pvals),method = "fdr"))

p <- plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
  geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",
           stat = "identity")+
  geom_text(aes(x = bin_id,y=max(c(s1_counts,s2_counts)), label = round(fdr,2)))+
  xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle(sampleName)
plots_list[[chrName]] <- p+guides(fill = "none" )
} 
mChrThresPlots <- marrangeGrob(plots_list, nrow=3, ncol=2)
mChrThresPlots

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

WC_CNV_43

sampleName <- "WC_CNV_43"
plots_list <- list()
for(chrName in paste0("chr",1:19)){
  bin_state_gr <- readRDS(paste0("./output/outputR/analysisRDS/",sampleName,"_",
                          chrName,"bin_state_gr.rds"))

s1_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s1",na.rm=T)
s2_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s2",na.rm=T)
bins_pvals <- lapply(seq(s1_counts), function(i){
  btest <- binom.test(c(s1_counts[i],s2_counts[i]))
  btest$p.value
})

plot_df <- data.frame(s1_count = s1_counts,
                      s2_count = s2_counts,
                      bin_id = seq(length(bins_pvals)),
                      biom_pvals = unlist(bins_pvals),
                      fdr = p.adjust(unlist(bins_pvals),method = "fdr"))

p <- plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
  geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",
           stat = "identity")+
  geom_text(aes(x = bin_id,y=max(c(s1_counts,s2_counts)), label = round(fdr,2)))+
  xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle(sampleName)
plots_list[[chrName]] <- p+guides(fill = "none" )
} 
mChrThresPlots <- marrangeGrob(plots_list, nrow=3, ncol=2)
mChrThresPlots

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

WC_CNV_53

sampleName <- "WC_CNV_53"
plots_list <- list()
for(chrName in paste0("chr",1:19)){
  bin_state_gr <- readRDS(paste0("./output/outputR/analysisRDS/",sampleName,"_",
                          chrName,"bin_state_gr.rds"))

s1_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s1",na.rm=T)
s2_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s2",na.rm=T)
bins_pvals <- lapply(seq(s1_counts), function(i){
  btest <- binom.test(c(s1_counts[i],s2_counts[i]))
  btest$p.value
})

plot_df <- data.frame(s1_count = s1_counts,
                      s2_count = s2_counts,
                      bin_id = seq(length(bins_pvals)),
                      biom_pvals = unlist(bins_pvals),
                      fdr = p.adjust(unlist(bins_pvals),method = "fdr"))

p <- plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
  geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",
           stat = "identity")+
  geom_text(aes(x = bin_id,y=max(c(s1_counts,s2_counts)), label = round(fdr,2)))+
  xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle(sampleName)
plots_list[[chrName]] <- p+guides(fill = "none" )
} 
mChrThresPlots <- marrangeGrob(plots_list, nrow=3, ncol=2)
mChrThresPlots

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Version Author Date
9a3ae70 rlyu 2021-08-05

Aggregate all cells from mutant mouse individuals

mutant_samples <- c("WC_522","WC_526","WC_CNV_43")
#sampleName <- "WC_CNV_44"
plots_list <- list()
bins_pvals_list <- list()
for(chrName in paste0("chr",1:19)){
  bin_state_gr <- lapply(mutant_samples,function(sampleName){
    readRDS(paste0("./output/outputR/analysisRDS/",sampleName,"_",
                          chrName,"bin_state_gr.rds"))
  })
 merged_mcols <- do.call(cbind,lapply(bin_state_gr, mcols))
  
s1_counts <- rowSums(data.frame(merged_mcols,check.names = F)=="s1",na.rm=T)
s2_counts <- rowSums(data.frame(merged_mcols,check.names = F)=="s2",na.rm=T)

bins_pvals <- lapply(seq(s1_counts), function(i){
  btest <- binom.test(c(s1_counts[i],s2_counts[i]))
  btest$p.value
})

plot_df <- data.frame(s1_count = s1_counts,
                      s2_count = s2_counts,
                      bin_id = seq(length(bins_pvals)),
                      biom_pvals = unlist(bins_pvals),
                      fdr = p.adjust(unlist(bins_pvals),method = "fdr"))

# p <- plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
#   geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",
#            stat = "identity")+
#   geom_text(aes(x = bin_id,y=max(c(s1_counts,s2_counts)), label = round(fdr,2)))+
#   xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle("mutant")

p <- plot_df %>% mutate(hap_ratio = s1_count /(s1_count +s2_count )) %>% ggplot() +
  geom_point(aes(x = bin_id, y = hap_ratio))+geom_hline(mapping = aes(yintercept = 0.5),linetype="dotted")+
#  geom_text(aes(x = bin_id,y=max(hap_ratio)+0.1, label = round(fdr,2)))+
  xlab(chrName)+ylab("cell counts")+ylim(c(0,1))+theme_bw(base_size = 18)+ggtitle("mutant")

plots_list[[chrName]] <- p+guides(fill = "none" )
bins_pvals_list[[chrName]] <- bins_pvals

} 

message(mutant_samples, " number of bins with FDR < 0.05: ", 
        sum(p.adjust(unlist(bins_pvals_list),"fdr")<0.05))
WC_522WC_526WC_CNV_43 number of bins with FDR < 0.05: 0
notitle_p <- lapply(plots_list, function(x) x +ggtitle("")+ylab("")+theme(plot.margin = unit(c(0.00,0.00,-0.02,0.00), "cm")))
mChrThresPlots <- marrangeGrob(notitle_p, ncol=7,nrow=3,
                               left = textGrob("Haplotype state ratio",
                                               rot = 90,gp = gpar(fontsize=22)),
                               layout_matrix = matrix(c(1:19,NA,NA), 3, 7, TRUE),
                               right= "  ")
mChrThresPlots

Version Author Date
9a3ae70 rlyu 2021-08-05

Aggregate all cells from wildtype mouse individuals

wildtype_samples <- c("WC_CNV_42","WC_CNV_44","WC_CNV_53")
plots_list <- list()
for(chrName in paste0("chr",1:19)){
  bin_state_gr <- lapply(wildtype_samples,function(sampleName){
    readRDS(paste0("./output/outputR/analysisRDS/",sampleName,"_",
                          chrName,"bin_state_gr.rds"))
  })
 merged_mcols <- do.call(cbind,lapply(bin_state_gr, mcols))
  
s1_counts <- rowSums(data.frame(merged_mcols,check.names = F)=="s1",na.rm=T)
s2_counts <- rowSums(data.frame(merged_mcols,check.names = F)=="s2",na.rm=T)
bins_pvals <- lapply(seq(s1_counts), function(i){
  btest <- binom.test(c(s1_counts[i],s2_counts[i]))
  btest$p.value
})

plot_df <- data.frame(s1_count = s1_counts,
                      s2_count = s2_counts,
                      bin_id = seq(length(bins_pvals)),
                      biom_pvals = unlist(bins_pvals),
                      fdr = p.adjust(unlist(bins_pvals),method = "fdr"))



# p <- plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
#   geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",
#            stat = "identity")+
#   geom_text(aes(x = bin_id,y=max(c(s1_counts,s2_counts)), label = round(fdr,2)))+
#   xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle("mutant")

p <- plot_df %>% mutate(hap_ratio = s1_count /(s1_count +s2_count )) %>% ggplot() +
  geom_point(aes(x = bin_id, y = hap_ratio))+geom_hline(mapping = aes(yintercept = 0.5),linetype="dotted")+
#  geom_text(aes(x = bin_id,y=max(hap_ratio)+0.1, label = round(fdr,2)))+
  xlab(chrName)+ylab("cell counts")+ylim(c(0,1))+theme_bw(base_size = 18)+ggtitle("mutant")

plots_list[[chrName]] <- p+guides(fill = "none" )

} 
notitle_p <- lapply(plots_list, function(x) x +ggtitle("")+ylab("")+theme(plot.margin = unit(c(0.00,0.00,-0.02,0.00), "cm")))
mChrThresPlots <- marrangeGrob(notitle_p, ncol=7,nrow=3,
                               left = textGrob("Haplotype state ratio",
                                               rot = 90,gp = gpar(fontsize=22)),
                               layout_matrix = matrix(c(1:19,NA,NA), 3, 7, TRUE),
                               right= "  ")
mChrThresPlots

Version Author Date
9a3ae70 rlyu 2021-08-05

Conclusion

There is no apparent regions with imbalanced segregation among the sperm cells from mutant and sperm cells from wildtype.

BC1F1 samples

Similar idea for BC1F1 samples.

plots_list <- list()
for(chrName in paste0("chr",1:19)){
  bin_state_gr <-  readRDS(paste0("./output/outputR/analysisRDS/bc1f1_",
                          chrName,"bin_state_gr.rds"))
                      
  s1_counts <- rowSums(data.frame(bin_state_gr,check.names = F)=="s1",na.rm=T)
  s2_counts <- rowSums(data.frame(bin_state_gr,check.names = F)=="s2",na.rm=T)
  bins_pvals <- lapply(seq(s1_counts), function(i){
    btest <- binom.test(c(s1_counts[i],s2_counts[i]))
    btest$p.value
  })
plot_df <- data.frame(s1_count = s1_counts,
                      s2_count = s2_counts,
                      bin_id = seq(length(bins_pvals)),
                      biom_pvals = unlist(bins_pvals),
                      fdr = p.adjust(unlist(bins_pvals),method = "fdr"))

# p <- plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
#   geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",
#            stat = "identity")+
#   geom_text(aes(x = bin_id,y=max(c(s1_counts,s2_counts)), label = round(fdr,2)))+
#   xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle("all bc1f1s")
p <- plot_df %>% mutate(hap_ratio = s1_count /(s1_count +s2_count )) %>% ggplot() +
  geom_point(aes(x = bin_id, y = hap_ratio))+geom_hline(mapping = aes(yintercept = 0.5),linetype="dotted")+
#  geom_text(aes(x = bin_id,y=max(hap_ratio)+0.1, label = round(fdr,2)))+
  xlab(chrName)+ylab("sample counts")+ylim(c(0,1))+theme_bw(base_size = 18)+ggtitle("all bc1f1s")

plots_list[[chrName]] <- p+guides(fill = "none" )
} 
notitle_p <- lapply(plots_list, function(x) x +ggtitle("")+ylab("")+
                      theme(plot.margin = unit(c(0.00,0.00,-0.02,0.00), "cm")))

mChrThresPlots <- marrangeGrob(notitle_p, ncol=7,nrow=3,
                               left = textGrob("Haplotype state ratio",
                                               rot = 90,gp = gpar(fontsize=22)),
                               layout_matrix = matrix(c(1:19,NA,NA), 3, 7, TRUE),
                               right= "  ")
mChrThresPlots

Per BC1F1 sample group

co_count <- readRDS(file = "output/outputR/analysisRDS/all_rse_count_07-20.rds")
for(sample_group in unique(co_count$sampleGroup) ){
  
  plots_list <- list()
  bins_pvals_list <- list()
  for(chrName in paste0("chr",1:19)){
    bin_state_gr <-  readRDS(paste0("./output/outputR/analysisRDS/bc1f1_",
                          chrName,"bin_state_gr.rds"))
    group_sids <- colnames(mcols(bin_state_gr)) %in% co_count$Sid[co_count$sampleGroup==sample_group]
  
  mcols(bin_state_gr) <- mcols(bin_state_gr)[group_sids]                    
  s1_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s1",na.rm=T)
  s2_counts <- rowSums(data.frame(mcols(bin_state_gr),check.names = F)=="s2",na.rm=T)
  bins_pvals <- lapply(seq(s1_counts), function(i){
    btest <- binom.test(c(s1_counts[i],s2_counts[i]))
    btest$p.value
  })
  plot_df <- data.frame(s1_count = s1_counts,
                        s2_count = s2_counts,
                        bin_id = seq(length(bins_pvals)),
                        biom_pvals = unlist(bins_pvals),
                        fdr = p.adjust(unlist(bins_pvals),method = "fdr"))
  
  # p <- plot_df %>% tidyr::pivot_longer(c("s1_count","s2_count")) %>% ggplot() +
  #   geom_bar(aes(x = bin_id, y = value,fill = name),position = "dodge",
  #            stat = "identity")+
  #   geom_text(aes(x = bin_id,y=max(c(s1_counts,s2_counts)), label = round(fdr,2)))+
  #   xlab(chrName)+ylab("cell counts")+theme_bw()+ggtitle(sample_group)
  p <- plot_df %>% mutate(hap_ratio = s1_count /(s1_count +s2_count )) %>% ggplot() +
  geom_point(aes(x = bin_id, y = hap_ratio))+geom_hline(mapping = aes(yintercept = 0.5),linetype="dotted")+
  geom_text(aes(x = bin_id,y=max(hap_ratio)+0.1, label = round(fdr,2)))+
  xlab(chrName)+ylab("sample counts")+ylim(c(0,1))+theme_bw(base_size = 18)+ggtitle(sample_group)

  plots_list[[chrName]] <- p+guides(fill = "none" )
  bins_pvals_list[[chrName]] <-  unlist(bins_pvals)
  } 
  
  
  mChrThresPlots <- marrangeGrob(plots_list, nrow=3, ncol=2)
  notitle_p <- lapply(plots_list, function(x) x+ggtitle("")+ylab("")+
                        theme(plot.margin = unit(c(0.00,0.00,-0.02,0.00), "cm")))
  mChrThresPlots <- marrangeGrob(notitle_p, ncol=7,nrow=3,
                               left = textGrob(paste0("Haplotype state ratio",sample_group),
                                               rot = 90,gp = gpar(fontsize=22)),
                               layout_matrix = matrix(c(1:19,NA,NA), 3, 7, TRUE),
                               right= "  ")
  print(mChrThresPlots)
  
  message(sample_group, " number of bins with FDR < 0.05: ", 
          sum(p.adjust(unlist(bins_pvals_list),"fdr")<0.05))

}
Male_KO number of bins with FDR < 0.05: 0

Version Author Date
01458d7 rlyu 2021-10-01
9a3ae70 rlyu 2021-08-05
Female_KO number of bins with FDR < 0.05: 0

Version Author Date
01458d7 rlyu 2021-10-01
9a3ae70 rlyu 2021-08-05
Female_WT number of bins with FDR < 0.05: 0

Version Author Date
01458d7 rlyu 2021-10-01
9a3ae70 rlyu 2021-08-05
Female_HET number of bins with FDR < 0.05: 0

Version Author Date
01458d7 rlyu 2021-10-01
9a3ae70 rlyu 2021-08-05
Male_WT number of bins with FDR < 0.05: 0

Version Author Date
01458d7 rlyu 2021-10-01
9a3ae70 rlyu 2021-08-05
Male_HET number of bins with FDR < 0.05: 0

Version Author Date
01458d7 rlyu 2021-10-01
9a3ae70 rlyu 2021-08-05

Conclusion

There is no apparent distorted segregation from the aggregated BC1F1 samples. Female_HET might worth having a closer look.

Mouse sex and genotype

The above grouping (Male_KO) was based on the genotype of BC1F1’s Fancm parent. Now we group by the mouse’s sex and genotype and check for female het specifically.

Find sex of the mice


devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                               
 version  R version 4.1.0 (2021-05-18)        
 os       Red Hat Enterprise Linux 8.4 (Ootpa)
 system   x86_64, linux-gnu                   
 ui       X11                                 
 language (EN)                                
 collate  en_AU.UTF-8                         
 ctype    en_AU.UTF-8                         
 tz       Australia/Melbourne                 
 date     2021-12-17                          

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version  date       lib source                         
 AnnotationDbi          1.54.1   2021-06-08 [1] Bioconductor                   
 AnnotationFilter       1.16.0   2021-05-19 [1] Bioconductor                   
 assertthat             0.2.1    2019-03-21 [1] CRAN (R 4.1.0)                 
 backports              1.2.1    2020-12-09 [1] CRAN (R 4.1.0)                 
 base64enc              0.1-3    2015-07-28 [1] CRAN (R 4.1.0)                 
 Biobase                2.52.0   2021-05-19 [1] Bioconductor                   
 BiocFileCache          2.0.0    2021-05-19 [1] Bioconductor                   
 BiocGenerics         * 0.38.0   2021-05-19 [1] Bioconductor                   
 BiocIO                 1.2.0    2021-05-19 [1] Bioconductor                   
 BiocParallel           1.26.2   2021-08-22 [1] Bioconductor                   
 biomaRt                2.48.3   2021-08-15 [1] Bioconductor                   
 Biostrings             2.60.2   2021-08-05 [1] Bioconductor                   
 biovizBase             1.40.0   2021-05-19 [1] Bioconductor                   
 bit                    4.0.4    2020-08-04 [1] CRAN (R 4.1.0)                 
 bit64                  4.0.5    2020-08-30 [1] CRAN (R 4.1.0)                 
 bitops                 1.0-7    2021-04-24 [1] CRAN (R 4.1.0)                 
 blob                   1.2.2    2021-07-23 [1] CRAN (R 4.1.0)                 
 BSgenome               1.60.0   2021-05-19 [1] Bioconductor                   
 cachem                 1.0.6    2021-08-19 [1] CRAN (R 4.1.0)                 
 callr                  3.7.0    2021-04-20 [1] CRAN (R 4.1.0)                 
 checkmate              2.0.0    2020-02-06 [1] CRAN (R 4.1.0)                 
 circlize               0.4.13   2021-06-09 [1] CRAN (R 4.1.0)                 
 cli                    3.0.1    2021-07-17 [1] CRAN (R 4.1.0)                 
 cluster                2.1.2    2021-04-17 [2] CRAN (R 4.1.0)                 
 codetools              0.2-18   2020-11-04 [2] CRAN (R 4.1.0)                 
 colorspace             2.0-2    2021-06-24 [1] CRAN (R 4.1.0)                 
 comapr               * 0.99.37  2021-11-28 [1] Github (ruqianl/comapr@aad1b6a)
 crayon                 1.4.1    2021-02-08 [1] CRAN (R 4.1.0)                 
 curl                   4.3.2    2021-06-23 [1] CRAN (R 4.1.0)                 
 data.table             1.14.2   2021-09-27 [1] CRAN (R 4.1.0)                 
 DBI                    1.1.1    2021-01-15 [1] CRAN (R 4.1.0)                 
 dbplyr                 2.1.1    2021-04-06 [1] CRAN (R 4.1.0)                 
 DelayedArray           0.18.0   2021-05-19 [1] Bioconductor                   
 desc                   1.4.0    2021-09-28 [1] CRAN (R 4.1.0)                 
 devtools               2.4.2    2021-06-07 [1] CRAN (R 4.1.0)                 
 dichromat              2.0-0    2013-01-24 [1] CRAN (R 4.1.0)                 
 digest                 0.6.28   2021-09-23 [1] CRAN (R 4.1.0)                 
 dplyr                * 1.0.7    2021-06-18 [1] CRAN (R 4.1.0)                 
 ellipsis               0.3.2    2021-04-29 [1] CRAN (R 4.1.0)                 
 ensembldb              2.16.4   2021-08-05 [1] Bioconductor                   
 evaluate               0.14     2019-05-28 [1] CRAN (R 4.1.0)                 
 fansi                  0.5.0    2021-05-25 [1] CRAN (R 4.1.0)                 
 farver                 2.1.0    2021-02-28 [1] CRAN (R 4.1.0)                 
 fastmap                1.1.0    2021-01-25 [1] CRAN (R 4.1.0)                 
 filelock               1.0.2    2018-10-05 [1] CRAN (R 4.1.0)                 
 foreach                1.5.1    2020-10-15 [1] CRAN (R 4.1.0)                 
 foreign                0.8-81   2020-12-22 [2] CRAN (R 4.1.0)                 
 Formula                1.2-4    2020-10-16 [1] CRAN (R 4.1.0)                 
 fs                     1.5.0    2020-07-31 [1] CRAN (R 4.1.0)                 
 generics               0.1.0    2020-10-31 [1] CRAN (R 4.1.0)                 
 GenomeInfoDb         * 1.28.4   2021-09-05 [1] Bioconductor                   
 GenomeInfoDbData       1.2.6    2021-09-30 [1] Bioconductor                   
 GenomicAlignments      1.28.0   2021-05-19 [1] Bioconductor                   
 GenomicFeatures        1.44.2   2021-08-26 [1] Bioconductor                   
 GenomicRanges        * 1.44.0   2021-05-19 [1] Bioconductor                   
 ggplot2              * 3.3.5    2021-06-25 [1] CRAN (R 4.1.0)                 
 git2r                  0.28.0   2021-01-10 [1] CRAN (R 4.1.0)                 
 GlobalOptions          0.1.2    2020-06-10 [1] CRAN (R 4.1.0)                 
 glue                   1.4.2    2020-08-27 [1] CRAN (R 4.1.0)                 
 gridExtra            * 2.3      2017-09-09 [1] CRAN (R 4.1.0)                 
 gtable                 0.3.0    2019-03-25 [1] CRAN (R 4.1.0)                 
 Gviz                   1.36.2   2021-07-04 [1] Bioconductor                   
 highr                  0.9      2021-04-16 [1] CRAN (R 4.1.0)                 
 Hmisc                  4.5-0    2021-02-28 [1] CRAN (R 4.1.0)                 
 hms                    1.1.1    2021-09-26 [1] CRAN (R 4.1.0)                 
 htmlTable              2.2.1    2021-05-18 [1] CRAN (R 4.1.0)                 
 htmltools              0.5.2    2021-08-25 [1] CRAN (R 4.1.0)                 
 htmlwidgets            1.5.4    2021-09-08 [1] CRAN (R 4.1.0)                 
 httpuv                 1.6.3    2021-09-09 [1] CRAN (R 4.1.0)                 
 httr                   1.4.2    2020-07-20 [1] CRAN (R 4.1.0)                 
 IRanges              * 2.26.0   2021-05-19 [1] Bioconductor                   
 iterators              1.0.13   2020-10-15 [1] CRAN (R 4.1.0)                 
 jpeg                   0.1-9    2021-07-24 [1] CRAN (R 4.1.0)                 
 jquerylib              0.1.4    2021-04-26 [1] CRAN (R 4.1.0)                 
 jsonlite               1.7.2    2020-12-09 [1] CRAN (R 4.1.0)                 
 KEGGREST               1.32.0   2021-05-19 [1] Bioconductor                   
 knitr                  1.36     2021-09-29 [1] CRAN (R 4.1.0)                 
 labeling               0.4.2    2020-10-20 [1] CRAN (R 4.1.0)                 
 later                  1.3.0    2021-08-18 [1] CRAN (R 4.1.0)                 
 lattice                0.20-44  2021-05-02 [2] CRAN (R 4.1.0)                 
 latticeExtra           0.6-29   2019-12-19 [1] CRAN (R 4.1.0)                 
 lazyeval               0.2.2    2019-03-15 [1] CRAN (R 4.1.0)                 
 lifecycle              1.0.1    2021-09-24 [1] CRAN (R 4.1.0)                 
 magrittr               2.0.1    2020-11-17 [1] CRAN (R 4.1.0)                 
 Matrix                 1.3-3    2021-05-04 [2] CRAN (R 4.1.0)                 
 MatrixGenerics         1.4.3    2021-08-26 [1] Bioconductor                   
 matrixStats            0.61.0   2021-09-17 [1] CRAN (R 4.1.0)                 
 memoise                2.0.0    2021-01-26 [1] CRAN (R 4.1.0)                 
 munsell                0.5.0    2018-06-12 [1] CRAN (R 4.1.0)                 
 nnet                   7.3-16   2021-05-03 [2] CRAN (R 4.1.0)                 
 pillar                 1.6.3    2021-09-26 [1] CRAN (R 4.1.0)                 
 pkgbuild               1.2.0    2020-12-15 [1] CRAN (R 4.1.0)                 
 pkgconfig              2.0.3    2019-09-22 [1] CRAN (R 4.1.0)                 
 pkgload                1.2.2    2021-09-11 [1] CRAN (R 4.1.0)                 
 plotly                 4.9.4.1  2021-06-18 [1] CRAN (R 4.1.0)                 
 plyr                   1.8.6    2020-03-03 [1] CRAN (R 4.1.0)                 
 png                    0.1-7    2013-12-03 [1] CRAN (R 4.1.0)                 
 prettyunits            1.1.1    2020-01-24 [1] CRAN (R 4.1.0)                 
 processx               3.5.2    2021-04-30 [1] CRAN (R 4.1.0)                 
 progress               1.2.2    2019-05-16 [1] CRAN (R 4.1.0)                 
 promises               1.2.0.1  2021-02-11 [1] CRAN (R 4.1.0)                 
 ProtGenerics           1.24.0   2021-05-19 [1] Bioconductor                   
 ps                     1.6.0    2021-02-28 [1] CRAN (R 4.1.0)                 
 purrr                  0.3.4    2020-04-17 [1] CRAN (R 4.1.0)                 
 R6                     2.5.1    2021-08-19 [1] CRAN (R 4.1.0)                 
 rappdirs               0.3.3    2021-01-31 [1] CRAN (R 4.1.0)                 
 RColorBrewer           1.1-2    2014-12-07 [1] CRAN (R 4.1.0)                 
 Rcpp                   1.0.7    2021-07-07 [1] CRAN (R 4.1.0)                 
 RCurl                  1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)                 
 remotes                2.4.1    2021-09-29 [1] CRAN (R 4.1.0)                 
 reshape2               1.4.4    2020-04-09 [1] CRAN (R 4.1.0)                 
 restfulr               0.0.13   2017-08-06 [1] CRAN (R 4.1.0)                 
 rjson                  0.2.20   2018-06-08 [1] CRAN (R 4.1.0)                 
 rlang                  0.4.11   2021-04-30 [1] CRAN (R 4.1.0)                 
 rmarkdown              2.11     2021-09-14 [1] CRAN (R 4.1.0)                 
 rpart                  4.1-15   2019-04-12 [2] CRAN (R 4.1.0)                 
 rprojroot              2.0.2    2020-11-15 [1] CRAN (R 4.1.0)                 
 Rsamtools              2.8.0    2021-05-19 [1] Bioconductor                   
 RSQLite                2.2.8    2021-08-21 [1] CRAN (R 4.1.0)                 
 rstudioapi             0.13     2020-11-12 [1] CRAN (R 4.1.0)                 
 rtracklayer            1.52.1   2021-08-15 [1] Bioconductor                   
 S4Vectors            * 0.30.1   2021-09-26 [1] Bioconductor                   
 scales                 1.1.1    2020-05-11 [1] CRAN (R 4.1.0)                 
 sessioninfo            1.1.1    2018-11-05 [1] CRAN (R 4.1.0)                 
 shape                  1.4.6    2021-05-19 [1] CRAN (R 4.1.0)                 
 stringi                1.7.4    2021-08-25 [1] CRAN (R 4.1.0)                 
 stringr                1.4.0    2019-02-10 [1] CRAN (R 4.1.0)                 
 SummarizedExperiment   1.22.0   2021-05-19 [1] Bioconductor                   
 survival               3.2-11   2021-04-26 [2] CRAN (R 4.1.0)                 
 testthat               3.0.4    2021-07-01 [1] CRAN (R 4.1.0)                 
 tibble                 3.1.4    2021-08-25 [1] CRAN (R 4.1.0)                 
 tidyr                  1.1.4    2021-09-27 [1] CRAN (R 4.1.0)                 
 tidyselect             1.1.1    2021-04-30 [1] CRAN (R 4.1.0)                 
 usethis                2.0.1    2021-02-10 [1] CRAN (R 4.1.0)                 
 utf8                   1.2.2    2021-07-24 [1] CRAN (R 4.1.0)                 
 VariantAnnotation      1.38.0   2021-05-19 [1] Bioconductor                   
 vctrs                  0.3.8    2021-04-29 [1] CRAN (R 4.1.0)                 
 viridisLite            0.4.0    2021-04-13 [1] CRAN (R 4.1.0)                 
 whisker                0.4      2019-08-28 [1] CRAN (R 4.1.0)                 
 withr                  2.4.2    2021-04-18 [1] CRAN (R 4.1.0)                 
 workflowr              1.6.2    2020-04-30 [1] CRAN (R 4.1.0)                 
 xfun                   0.26     2021-09-14 [1] CRAN (R 4.1.0)                 
 XML                    3.99-0.8 2021-09-17 [1] CRAN (R 4.1.0)                 
 xml2                   1.3.2    2020-04-23 [1] CRAN (R 4.1.0)                 
 XVector                0.32.0   2021-05-19 [1] Bioconductor                   
 yaml                   2.2.1    2020-02-01 [1] CRAN (R 4.1.0)                 
 zlibbioc               1.38.0   2021-05-19 [1] Bioconductor                   

[1] /mnt/beegfs/mccarthy/scratch/general/rlyu/Software/R/Rlib/4.1.0/yeln
[2] /opt/R/4.1.0/lib/R/library