Last updated: 2021-10-13

Checks: 6 1

Knit directory: yeln_2019_spermtyping/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190102) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6c2a673. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .config/
    Ignored:    analysis/.Rhistory
    Ignored:    data/F21FTSAPHT0641MOUobtfR/

Untracked files:
    Untracked:  .DS_Store
    Untracked:  .Renviron
    Untracked:  .bulkDNAseq_BGI-extra.snk.swp
    Untracked:  .cache/
    Untracked:  .snakemake/
    Untracked:  .theano/
    Untracked:  2021-07-13_scRNA-seq-analysis-of-sperm-cells-from-Fancm-mutant-and-Fancm-wildtype-mice.Rmd
    Untracked:  2021-07-13_scRNA-seq-analysis-of-sperm-cells-from-Fancm-mutant-and-Fancm-wildtype-mice_files/
    Untracked:  2021-07-23_FANCM-manuscript-figures.Rmd
    Untracked:  2021-09-10_BC1F1-copy-number-analysis.Rmd
    Untracked:  Rplots.pdf
    Untracked:  Snakefile_AFtracks.log.out
    Untracked:  Snakefile_BC1F1BGIseq2021.snk
    Untracked:  Snakefile_DNAseq-BGIseq-bc1f1-hmm-2021.log.out
    Untracked:  Snakefile_DNAseq-BGIseq-bc1f1-hmm-extra-11.log.out
    Untracked:  Snakefile_DNAseq-BGIseq-bcf-hmm.log.out
    Untracked:  Snakefile_DNAseq-F2F3-hmm.snk.log.out
    Untracked:  Snakefile_DNAseq-agrf-hmm.snk.log.out
    Untracked:  Snakefile_DNAseq-mos.log.out
    Untracked:  Snakefile_DNAseqF2F3.log.out
    Untracked:  Snakefile_alignATACseq.log.out
    Untracked:  Snakefile_bulkATACseq.snk
    Untracked:  Snakefile_bulkBGILowTrans.log.out
    Untracked:  Snakefile_bulkagrcountCO.log.out
    Untracked:  Snakefile_bulkagrf.log.out
    Untracked:  Snakefile_bulkagrfLowTrans.log.out
    Untracked:  Snakefile_bulkagrfQC.log.out
    Untracked:  Snakefile_bulkagrfSegRatio.log.out
    Untracked:  Snakefile_bulkagrffilterCO.log.out
    Untracked:  Snakefile_bulkbc1f1-2021.log.out
    Untracked:  Snakefile_bulkbgi.log.out
    Untracked:  Snakefile_bulkbgifilterCO.log.out
    Untracked:  Snakefile_cellChrSNP.err.log.out
    Untracked:  Snakefile_extraBulkbgi.log.out
    Untracked:  Snakefile_plotDiagnosticAFtracks.snk
    Untracked:  Snakefile_runCNVcaller.snk
    Untracked:  Snakefile_runGCNV.log.out
    Untracked:  Snakefile_runHMMCNV.log.out
    Untracked:  Snakefile_runcsnp-rnaseq.snk
    Untracked:  Snakefile_split.fq.out
    Untracked:  Snakefile_tag-fastq-bc.snk
    Untracked:  Snakefile_tag.err.log.out
    Untracked:  W12/
    Untracked:  WC_522/
    Untracked:  WC_526/
    Untracked:  WC_CNV_42/
    Untracked:  WC_CNV_42_firstBatch/
    Untracked:  WC_CNV_43/
    Untracked:  WC_CNV_43_firstBatch/
    Untracked:  WC_CNV_44/
    Untracked:  WC_CNV_44_firstBatch/
    Untracked:  WC_CNV_53/
    Untracked:  WC_CNV_53_firstBatch/
    Untracked:  WC_CNV_md5.txt
    Untracked:  WC_Sp/
    Untracked:  analysis/2021-01-14_lowCov-DNAseqAGRF-coverage.Rmd
    Untracked:  analysis/2021-07-13_scRNA-seq analysis of sperm cells from Fancm-mutant and Fancm-wildtype mice.Rmd
    Untracked:  analysis/2021-07-14_ATACseq-coverage.Rmd
    Untracked:  analysis/2021-07-26_BC1F1-SampleCNVs.Rmd
    Untracked:  analysis/2021-10-13_FANCM-manuscript-Crossovers-genomic-features.Rmd
    Untracked:  analysis/figure/
    Untracked:  analysis/nstates.png
    Untracked:  bc1f1_chr19bin_state_gr.rds
    Untracked:  code/bc1f1-af-co-tracks.R
    Untracked:  code/binom-seg-test-scCNV.R
    Untracked:  code/investigateSegsCNV.R
    Untracked:  code/run_sccomp.R
    Untracked:  code/scCNV_CO_SNP_density.R
    Untracked:  dag-scCNV.svg
    Untracked:  dag.svg
    Untracked:  data/10xCNV/
    Untracked:  data/737K-crdna-v1.txt
    Untracked:  data/All_data_May_to_August_2019.xlsx
    Untracked:  data/BC1F1-bgi-2021.txt
    Untracked:  data/BC1F1-bgi-extra_2021/
    Untracked:  data/BC1F1-bgi-extra_2021_samplemeta.txt
    Untracked:  data/BC1F1-bgi-fq-path_2021/
    Untracked:  data/F20FTSAPHT0350_MUSyfqR_samplemeta.txt
    Untracked:  data/F2f3_samplemeta.txt
    Untracked:  data/agrfBulkDNA/
    Untracked:  data/agrf_samplefqdir.txt
    Untracked:  data/agrf_samplemeta.txt
    Untracked:  data/atac_seq/
    Untracked:  data/cellSNP_W12-time2.txt/
    Untracked:  data/convertWIG2bed.sh
    Untracked:  data/convertWIG2bed_2.sh
    Untracked:  data/fancm_mice/
    Untracked:  data/fancm_tubule_blinded_counts.xlsx
    Untracked:  data/genLn.sh
    Untracked:  data/hg19.gc5Base.txt.gz
    Untracked:  data/mm10.100k.bed
    Untracked:  data/mm10.100k.meanGC.bed
    Untracked:  data/mm10.100k.meanGC.chr1.bed
    Untracked:  data/mm10.100k.meanGC.chr3.bed
    Untracked:  data/mm10.1m.bed
    Untracked:  data/mm10.1m.meanGC.bed
    Untracked:  data/mm10.1m.meanGC.chr1.bed
    Untracked:  data/mm10.1m.meanGC.chr10.bed
    Untracked:  data/mm10.1m.meanGC.chr11.bed
    Untracked:  data/mm10.1m.meanGC.chr12.bed
    Untracked:  data/mm10.1m.meanGC.chr13.bed
    Untracked:  data/mm10.1m.meanGC.chr14.bed
    Untracked:  data/mm10.1m.meanGC.chr15.bed
    Untracked:  data/mm10.1m.meanGC.chr16.bed
    Untracked:  data/mm10.1m.meanGC.chr17.bed
    Untracked:  data/mm10.1m.meanGC.chr18.bed
    Untracked:  data/mm10.1m.meanGC.chr19.bed
    Untracked:  data/mm10.1m.meanGC.chr2.bed
    Untracked:  data/mm10.1m.meanGC.chr3.bed
    Untracked:  data/mm10.1m.meanGC.chr4.bed
    Untracked:  data/mm10.1m.meanGC.chr5.bed
    Untracked:  data/mm10.1m.meanGC.chr6.bed
    Untracked:  data/mm10.1m.meanGC.chr7.bed
    Untracked:  data/mm10.1m.meanGC.chr8.bed
    Untracked:  data/mm10.1m.meanGC.chr9.bed
    Untracked:  data/mm10.1m.sorted.bed
    Untracked:  data/mm10.bed
    Untracked:  data/mm10.gc5Base.bed
    Untracked:  data/mm10.gc5Base.chr1.bed
    Untracked:  data/mm10.gc5Base.chr10.bed
    Untracked:  data/mm10.gc5Base.chr11.bed
    Untracked:  data/mm10.gc5Base.chr12.bed
    Untracked:  data/mm10.gc5Base.chr13.bed
    Untracked:  data/mm10.gc5Base.chr14.bed
    Untracked:  data/mm10.gc5Base.chr15.bed
    Untracked:  data/mm10.gc5Base.chr16.bed
    Untracked:  data/mm10.gc5Base.chr17.bed
    Untracked:  data/mm10.gc5Base.chr18.bed
    Untracked:  data/mm10.gc5Base.chr19.bed
    Untracked:  data/mm10.gc5Base.chr2.bed
    Untracked:  data/mm10.gc5Base.chr3.bed
    Untracked:  data/mm10.gc5Base.chr4.bed
    Untracked:  data/mm10.gc5Base.chr5.bed
    Untracked:  data/mm10.gc5Base.chr6.bed
    Untracked:  data/mm10.gc5Base.chr7.bed
    Untracked:  data/mm10.gc5Base.chr8.bed
    Untracked:  data/mm10.gc5Base.chr9.bed
    Untracked:  data/mm10.gc5Base.wib
    Untracked:  data/mm10.gc5Base.wig.gz
    Untracked:  data/mm10.gc5Base.wigVarStep.gz
    Untracked:  data/rawNames.txt
    Untracked:  data/slurm-59654.out
    Untracked:  data/slurm-59655.out
    Untracked:  data/slurm-59670.out
    Untracked:  docs/figure/2020-10-20_BulkDNASamples-CO-genetic-dist.Rmd/
    Untracked:  docs/site_libs/accessible-code-block-0.0.1/
    Untracked:  envs/demultiplex.yml
    Untracked:  envs/env_bulkDNA.yml
    Untracked:  envs/mosdepth.yaml
    Untracked:  fastp.html
    Untracked:  fastp.json
    Untracked:  job_tracking/
    Untracked:  multipage.pdf
    Untracked:  nohup.out
    Untracked:  nstates.png
    Untracked:  nstates1.png
    Untracked:  old_Renv
    Untracked:  output/.DS_Store
    Untracked:  output/10xCNV/
    Untracked:  output/atac_seq/
    Untracked:  output/bcf/
    Untracked:  output/bulkDNAseq/
    Untracked:  output/bulkDNAseq_BC1F1BGI2021/
    Untracked:  output/bulkDNAseq_BGI/
    Untracked:  output/bulkDNAseq_F2F3/
    Untracked:  output/bulkDNAseq_agrf/
    Untracked:  output/figures/
    Untracked:  output/gCNV/
    Untracked:  output/outputR/
    Untracked:  output/scCNV/
    Untracked:  output/scRNA/
    Untracked:  references/BC1F1_samples-2020-07-08.xlsx
    Untracked:  references/BC1F1_samples-2020-10-20.xlsx
    Untracked:  references/BC1F1_summary.xlsx
    Untracked:  references/Copy of crossover_count.csv
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.WC_522_het.vcf.gz
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.WC_522_het.vcf.gz.csi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.WC_522_het.vcf.gz.tbi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.pos.only.tsv
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.vcf.gz
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.vcf.gz.csi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.vcf.gz.tbi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.txt
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.gz
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.gz.csi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.stat
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.vcf.gz
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.vcf.gz.csi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.gz
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.gz.csi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.gz.tbi
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.idx
    Untracked:  references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.stat
    Untracked:  references/cellranger-ref-dna-mm10/
    Untracked:  references/cellranger-ref-mm10/
    Untracked:  references/chrs.map
    Untracked:  references/chrs_r.map
    Untracked:  references/col1
    Untracked:  references/col2
    Untracked:  references/k36.umap.bed
    Untracked:  references/k36.umap.bed.idx
    Untracked:  references/mm10_contig_ploidy_priors.tsv
    Untracked:  references/scRNAseq_gene_sets.xlsx
    Untracked:  references/wasp/
    Untracked:  retag-0-mis.log.txt
    Untracked:  runCountCB.out
    Untracked:  run_countcb.snk
    Untracked:  runsCNV.out
    Untracked:  runsCsnp.out
    Untracked:  split.log.txt
    Untracked:  sslurm-42367.out
    Untracked:  submit-AlignBulkATAC.sh
    Untracked:  submit-runAlignBC1F1BGI.sh
    Untracked:  submit-runBulkDNAagrf.sh
    Untracked:  submit-runBulkDNAbgi.sh
    Untracked:  submit-runBulkDNAbgiExtra.sh
    Untracked:  submit-runCNV.sh
    Untracked:  submit-runCTCB.sh
    Untracked:  submit-runDNAseq-BGIseq-bc1f1-hmm-2021.sh
    Untracked:  submit-runDNAseq-BGIseq-bc1f1-hmm-Extra-2021.sh
    Untracked:  submit-runDNAseq-BGIseq-bcf-hmm.sh
    Untracked:  submit-runDNAseqF2F3.sh
    Untracked:  submit-runHMMBulkAGRF.sh
    Untracked:  submit-runHMMBulkAGRFBCF.sh
    Untracked:  submit-runHMMF2F3.sh
    Untracked:  submit-runMos.sh
    Untracked:  submit-runPlotAFBC1F1.sh
    Untracked:  submit-runSNK-cellchrsnp.sh
    Untracked:  submit-runSNK-hmm-CNV.sh
    Untracked:  submit-runcsnp.sh
    Untracked:  submit-rungCNV.sh
    Untracked:  submit-sbatch.sh
    Untracked:  test.png
    Untracked:  theano_base/
    Untracked:  tmp/
    Untracked:  yeln_2019_spermtyping.Rproj

Unstaged changes:
    Modified:   .gitignore
    Modified:   .gitlab-ci.yml
    Modified:   CITATION
    Modified:   LICENSE
    Modified:   Snakefile_DNAseq-BGIseq-bcf-hmm.snk
    Modified:   Snakefile_DNAseq-agrf-hmm.snk
    Modified:   Snakefile_DNAseq-chr-plot.snk
    Modified:   Snakefile_HMM-scCNV
    Modified:   Snakefile_bcf
    Modified:   Snakefile_bulkDNAseq-mos.snk
    Modified:   Snakefile_bulkDNAseq.snk
    Modified:   Snakefile_cluster
    Modified:   Snakefile_gatk
    Modified:   Snakefile_remap
    Modified:   _workflowr.yml
    Modified:   analysis/2019-04-13_expl-data-analysis_2019-04-12-10x-run.Rmd
    Modified:   analysis/2020-01-02_W12_smcelss_C9_bcftools.Rmd
    Modified:   analysis/2020-01-03_W11-small-cells.Rmd
    Modified:   analysis/2020-01-03_W11-vartrix-diploid.Rmd
    Modified:   analysis/2020-01-03_W11-vartrix.Rmd
    Modified:   analysis/2020-01-03_W11_get_smcells.Rmd
    Modified:   analysis/2020-01-03_W12-vartrix.Rmd
    Modified:   analysis/2020-05-01_10xCNV-summary.Rmd
    Modified:   analysis/2020-05-07_WC-522-bulk-sperm-vcf.Rmd
    Modified:   analysis/2020-05-11_WC-522-filtered-variants-single-cell.Rmd
    Modified:   analysis/2020-05-15_WC_522-wasp-Filtering.Rmd
    Modified:   analysis/2020-05-15_barcode-calling-10xCNV.Rmd
    Modified:   analysis/2020-05-19_SNP-gaps-and-distribution-analysis.Rmd
    Modified:   analysis/2020-05-25_FVB-BL6-Control-cell-for-estimating-HMM-pars.Rmd
    Modified:   analysis/2020-06-02_WC-522-nocell-group5.Rmd
    Modified:   analysis/2020-06-02_mix-haploid-cells.Rmd
    Modified:   analysis/2020-06-15_lowCov-DNAseq-summary-stats.Rmd
    Modified:   analysis/2020-06-16_detect-CO-bulkDNAseq-1X.Rmd
    Modified:   analysis/2020-06-17_scDNA-viterbi-CO-detection.Rmd
    Modified:   analysis/2020-07-06_bulk-samples-theta-estimate.Rmd
    Modified:   analysis/2020-07-14_agrf-genotyping-markers.Rmd
    Modified:   analysis/2020-07-27_state-bias-diagnosis.Rmd
    Modified:   analysis/2020-08-13_Marker-based-genetic-map.Rmd
    Modified:   analysis/2020-08-14_Genetic-map-hot-spots-bulk-BGI.Rmd
    Modified:   analysis/2020-08-18_total-genetic-dist-genome.Rmd
    Modified:   analysis/2020-10-06_scCNV-CO-genetic-dist.Rmd
    Modified:   analysis/2020-10-20_BulkDNASamples-CO-genetic-dist.Rmd
    Modified:   analysis/2020-10-20_agrfBulkDNASamples-WT-HET-CO-genetic-dist.Rmd
    Modified:   analysis/2020-11-24_BulkSamples-CrossoverAnalysisUpdates.Rmd
    Modified:   analysis/2020-7-22_detectCO-BulkDNA-corrected.Rmd
    Modified:   analysis/2021-02-09_F2F3-samples-CO-analysis.Rmd
    Modified:   analysis/2021-02-22_Investigation-Female-HET.Rmd
    Modified:   analysis/2021-06-28_BulkBC1F1-samples.Rmd
    Modified:   analysis/2021-06-29_exploring-data-batches-bulk-bc1f1-samples.Rmd
    Modified:   analysis/2021-07-23_FANCM-manuscript-figures-2.Rmd
    Modified:   analysis/2021-07-25_FANCM-manuscript-figures-3.Rmd
    Modified:   analysis/SNPs_hp_dp_cells.pptx
    Modified:   analysis/W11_W12_pooled_clustering.Rmd
    Modified:   analysis/W11_clustering.Rmd
    Modified:   analysis/W11_further_analysis.Rmd
    Modified:   analysis/W12_clustering.Rmd
    Modified:   analysis/about.Rmd
    Modified:   analysis/expl_W12_C28_GATK_AF_plot.Rmd
    Modified:   analysis/expl_W12_C28_cellsnp_AF_plot.Rmd
    Modified:   analysis/expl_W12_C2_cellsnp_AF_plot.Rmd
    Modified:   analysis/expl_W12_GATK_AF_plot.Rmd
    Modified:   analysis/expl_W12_bcftools_AF_plot.Rmd
    Modified:   analysis/expl_W12_bcftools_AF_plot_dp.Rmd
    Modified:   analysis/expl_W12_cellsnp_AF_plot.Rmd
    Modified:   analysis/license.Rmd
    Modified:   analysis/scRNAseq-analysis-outline.Rmd
    Modified:   bulkDNAseq_BGI-30X.snk
    Modified:   code/README.md
    Modified:   code/badSampleBulkDNAseq.R
    Modified:   code/bulk_BL6_FVB_rate0_estimate.R
    Modified:   code/cal_ref_ratio.R
    Modified:   code/cc_score.R
    Modified:   code/cellCO-QCControl.R
    Modified:   code/cellQualityCheck.R
    Modified:   code/cellQualityCheck.old.R
    Modified:   code/checkCoverageBulkseq.R
    Modified:   code/checkF2F3trios.R
    Modified:   code/checkF2F3triosLtrans.R
    Modified:   code/check_co.R
    Modified:   code/cluster.R
    Modified:   code/combine_calqc.R
    Modified:   code/combine_cluster.R
    Modified:   code/combine_crt_sce.R
    Modified:   code/combine_filter_qcdb.R
    Modified:   code/combine_findmarker.R
    Modified:   code/combine_monocle.R
    Modified:   code/combine_pca.R
    Modified:   code/combine_sctransnorm.R
    Modified:   code/combine_vis.R
    Modified:   code/controlCell-fvbbl6.R
    Modified:   code/controlCell-pEstimate.R
    Modified:   code/correctLowConfCO.R
    Modified:   code/count_cb.nim
    Modified:   code/cumGeneticDistance.R
    Modified:   code/def_viterbi.R
    Modified:   code/detect_noisy_cells.R
    Modified:   code/dr_pca.R
    Modified:   code/expl_bined_Ave.R
    Modified:   code/fancm_reads.R
    Modified:   code/filterStateAndCO.R
    Modified:   code/findLowConfCO.R
    Modified:   code/find_segment_length.R
    Modified:   code/findmarker.R
    Modified:   code/getMarkerBasedCOs.R
    Modified:   code/markerStateAggr.R
    Modified:   code/nohup.out
    Modified:   code/norm.R
    Modified:   code/overlay_fun.R
    Modified:   code/plotBadMarkersBulk.R
    Modified:   code/plotCOregion.R
    Modified:   code/plotGeneticMap.R
    Modified:   code/plotHotRegion.R
    Modified:   code/plot_bp_bin-AF.R
    Modified:   code/plot_chr_co_bulkDNA.R
    Modified:   code/plot_corrected_state.R
    Modified:   code/plot_roh.py
    Modified:   code/rate_estimator.R
    Modified:   code/renamer.py
    Modified:   code/renamer_bam.nim
    Modified:   code/report_summary.Rmd
    Modified:   code/retag.py
    Modified:   code/retag_bam.nim
    Modified:   code/runVb-scCNV.R
    Modified:   code/run_viterbi.R
    Modified:   code/run_viterbi_F2F3.R
    Modified:   code/run_viterbi_bulkSample_chr.R
    Modified:   code/run_viterbi_cell_chr.R
    Modified:   code/scCNVcountCO.R
    Modified:   code/split_bam.nim
    Modified:   code/subsampleAGRF.R
    Modified:   code/vartrix.sh
    Modified:   code/viterbi_example_chr_cell.R
    Modified:   data/README.md
    Modified:   docs/.nojekyll
    Modified:   docs/2020-01-03_W11-small-cells.html
    Modified:   docs/Progress_report_yeln.html
    Modified:   docs/W11_W12_pooled_clustering.html
    Modified:   docs/W11_clustering.html
    Modified:   docs/W11_further_analysis.html
    Modified:   docs/W12_clustering.html
    Modified:   docs/W12_further_analysis.html
    Modified:   docs/about.html
    Modified:   docs/assets/F1_gametes.PNG
    Modified:   docs/assets/SplitNCigarReads.png
    Modified:   docs/assets/W11double.pdf
    Modified:   docs/assets/W12double.pdf
    Modified:   docs/assets/singleCell3pv2.PNG
    Modified:   docs/expl_W12_C28_GATK_AF_plot.html
    Modified:   docs/expl_W12_C28_cellsnp_AF_plot.html
    Modified:   docs/expl_W12_C2_cellsnp_AF_plot.html
    Modified:   docs/expl_W12_GATK_AF_plot.html
    Modified:   docs/expl_W12_bcftools_AF_plot.html
    Modified:   docs/expl_W12_bcftools_AF_plot_dp.html
    Modified:   docs/expl_W12_cellsnp_AF_plot.html
    Modified:   docs/expl_bcftools_dp_dedb_W12.html
    Modified:   docs/figure/Progress_report_yeln.Rmd/pressure-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-3.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-4.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_sample-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_sample-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/by_sample-3.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/c4_c28-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/cluster_composition-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/clustree-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/hm-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-10.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-11.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-12.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-13.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-14.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-15.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-16.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-3.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-4.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-5.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-6.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-7.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-8.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-9.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-3.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-4.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-5.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-6.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster_by_sample-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster_by_sample-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_fltqc-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_fltqc-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_hvg-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_marker_plot-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_pc_select-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_pca_visulisation-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_raw_qc-1.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/pulled_raw_qc-2.png
    Modified:   docs/figure/W11_W12_pooled_clustering.Rmd/unnamed-chunk-4-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_cluster-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_cluster-2.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_cluster-3.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_cluster-4.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-10.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-11.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-12.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-13.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-14.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-15.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-2.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-3.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-4.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-5.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-6.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-7.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-8.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_dedb_umaps-9.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_fltqc-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_fltqc-2.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_hvg-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_marker_plot-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_pc_select-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_pca_visulisation-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_raw_qc-1.png
    Modified:   docs/figure/W12_clustering.Rmd/W12_raw_qc-2.png
    Modified:   docs/figure/W12_clustering.Rmd/ab_genes-1.png
    Modified:   docs/figure/W12_clustering.Rmd/ab_genes-2.png
    Modified:   docs/figure/W12_clustering.Rmd/boxplot_chrYgenes-1.png
    Modified:   docs/figure/W12_clustering.Rmd/plotExpr-1.png
    Modified:   docs/figure/W12_clustering.Rmd/plotExpr-2.png
    Modified:   docs/figure/W12_clustering.Rmd/plotExpr-3.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-1.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-10.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-11.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-12.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-13.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-14.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-15.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-2.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-3.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-4.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-5.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-6.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-7.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-8.png
    Modified:   docs/figure/W12_clustering.Rmd/spermatids_markers-9.png
    Modified:   docs/figure/W12_clustering.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/W12_clustering.Rmd/unnamed-chunk-3-1.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/genotyped_AF-1.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/genotyped_AF-2.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/no_snps-2.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/unnamed-chunk-3-1.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/unnamed-chunk-3-2.png
    Modified:   docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/colr_dp-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-2.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-3.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-4.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-5.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-6.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/rm_all_hets-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/unnamed-chunk-2-2.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/unnamed-chunk-4-1.png
    Modified:   docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-2.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-3.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-4.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-5.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-6.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/rm_all_hets-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/rm_all_hets_dp-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-3-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-3-2.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-5-1.png
    Modified:   docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/genotyped_AF-1.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/genotyped_AF-2.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/no_snps-2.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/unnamed-chunk-3-1.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/unnamed-chunk-3-2.png
    Modified:   docs/figure/expl_W12_GATK_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/all_bcf_cells-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/all_bcf_cells-2.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/colr_snp_dp-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/filter_qual-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/filter_qual-2.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/genotyped-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/genotyped-2.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/colr_snp_dp-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/filter_qual-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/filter_qual-2.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/genotyped-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/genotyped-2.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/filterSNPs-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/filterSNPs-2.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-2.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-3.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-4.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-5.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-6.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-1-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-4-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-5-1.png
    Modified:   docs/figure/expl_W12_cellsnp_AF_plot.Rmd/whole_genome_af-1.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/genotyped-1.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/genotyped-2.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/no_snps-1.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/unnamed-chunk-1-1.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/unnamed-chunk-2-1.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/unnamed-chunk-2-2.png
    Modified:   docs/figure/expl_bcftools_dp_dedb_W12.Rmd/whole_genome_af-1.png
    Modified:   docs/index.html
    Modified:   docs/license.html
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.css.map
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.css.map
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/cerulean.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/cosmo.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/darkly.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/flatly.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Lato.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/LatoBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/LatoItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/NewsCycle.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/NewsCycleBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSans.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansBoldItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansLightItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Raleway.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RalewayBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Roboto.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoMedium.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansPro.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Ubuntu.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/journal.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/lumen.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/paper.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/readable.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/sandstone.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/simplex.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/spacelab.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/united.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/yeti.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.eot
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.svg
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.woff
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.woff2
    Modified:   docs/site_libs/bootstrap-3.3.5/js/bootstrap.js
    Modified:   docs/site_libs/bootstrap-3.3.5/js/bootstrap.min.js
    Modified:   docs/site_libs/bootstrap-3.3.5/js/npm.js
    Modified:   docs/site_libs/bootstrap-3.3.5/shim/html5shiv.min.js
    Modified:   docs/site_libs/bootstrap-3.3.5/shim/respond.min.js
    Modified:   docs/site_libs/font-awesome-5.1.0/css/all.css
    Modified:   docs/site_libs/font-awesome-5.1.0/css/v4-shims.css
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.woff2
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.woff2
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.woff2
    Modified:   docs/site_libs/jquery-1.11.3/jquery.min.js
    Modified:   docs/site_libs/jqueryui-1.11.4/README
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_444444_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_555555_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_777620_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_777777_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_cc0000_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_ffffff_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/index.html
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.js
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.min.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.min.js
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.structure.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.structure.min.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.theme.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.theme.min.css
    Modified:   docs/site_libs/navigation-1.1/codefolding.js
    Modified:   docs/site_libs/navigation-1.1/sourceembed.js
    Modified:   docs/site_libs/navigation-1.1/tabsets.js
    Modified:   docs/site_libs/tocify-1.9.1/jquery.tocify.css
    Modified:   docs/site_libs/tocify-1.9.1/jquery.tocify.js
    Modified:   org/README.md
    Modified:   output/README.md
    Modified:   references/README.md
    Modified:   resources/README.md
    Modified:   yeln.bib

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


Crossover distributions and genomic features

SNP density distribution indicate how many informative SNPs we have to map crossovers in either the scCNV or BC1F1 bulk sequencing samples. We are interested to find out whether our ability to find crossovers are impacted by the SNP densities or not.

SNP density distribution

SNP density distribution found by looking at the positions of SNPs from the reference VCF file references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.gz

snp_density <- read.table(file = "references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.txt",
                          col.names = c("chr","Pos"))
snp_density <- snp_density[!snp_density$chr %in% c("chrX","chrY"),]

TSS density

Using biomRt for finding transcript starting sizes for mouse (ref genome mm10)

ensembl95 <- useEnsembl(biomart = 'genes',
                        dataset = 'mmusculus_gene_ensembl',
                        version = 95)

tss_annot <- getBM( attributes = c("transcription_start_site", "chromosome_name",
                            "transcript_start", "transcript_end",
                            "strand",  "ensembl_gene_id",
                            "ensembl_transcript_id", "external_gene_name"),
        
                 mart = ensembl95)

tss_annot <- tss_annot[tss_annot$chromosome_name %in% paste0(1:19),]

GC Content TSS and SNP density scCNV

mm10.gc5Base.wig.gz downloaded from https://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/

mm10_meanGC <- read.table(file = "data/mm10.1m.meanGC.bed")
mm10_meanGC$V4 <- as.numeric(mm10_meanGC$V4)

#plotTracks(list(mm10_meanGC_track,crossover_count_track),chromosome = "chr1")

Construct GRanges for genomic features.

# tss_track <- DataTrack(range = GRanges(seqnames = tss_annot$chromosome_name,
#                                                 ranges = IRanges(start = tss_annot$transcription_start_site,
#                                                                 width = 1)),
#                        genome = "mm10",
#                        data = data.frame(count = rep(1, length(tss_annot$chromosome_name))),
#                        type="hist",
#                        window = 80,
#                        aggregation = sum,
#                        name = "TSS\ndensity",
#                        background.panel = "#f3f4d3",
#                        background.title = "#d3e3b6",
#                        cex.title = 1.4,
#                        cex.axis = 1.0)
tss_gr <- GRanges(seqnames = tss_annot$chromosome_name,
                  ranges = IRanges(start = tss_annot$transcription_start_site,
                                   width = 1),
                  tss_count = 1)

snp_density_gr <- GRanges(seqnames = snp_density$chr,
                         ranges = IRanges(start = snp_density$Pos,
                                          width = 1),
                          snp_count = 1)
mm10_meanGC_gr <- GRanges(seqnames = mm10_meanGC$V1,
                         ranges = IRanges(start = mm10_meanGC$V2,
                                          end = mm10_meanGC$V3),
                         gc_perc = as.numeric( mm10_meanGC$V4))


 
# mm10_meanGC_track <- DataTrack(range = GRanges(seqnames = mm10_meanGC$V1,
#                                                 ranges = IRanges(start = mm10_meanGC$V2,
#                                                                  end = mm10_meanGC$V3)),
#                        genome = "mm10",
#                        data = mm10_meanGC$V4,
#                        type=c("p","l"),
#                        window = 80,
#                        aggregation =  mean,
#                        name = "GC\nPercent",
#                        background.panel = "#FFFEDB",
#                        background.title = "lightblue",
#                        cex.title = 1.4,
#                        cex.axis = 1.0)

# snp_density_track_log <- DataTrack(range = GRanges(seqnames = snp_density$chr,
#                                                 ranges = IRanges(start = snp_density$Pos,
#                                                                 width = 1)),
#                        genome = "mm10",
#                        data = data.frame(count = rep(1, length(snp_density$chr))),
#                        type=c("p","l"),
#                        window = 98,
#                        aggregation =  function(x) { log10(sum(x)+1)},
#                        name = "SNP\ndensity\nlog10",
#                        background.panel = "#FFFEDB",
#                        background.title = "lightblue",
#                        cex.title = 1.4,
#                       cex.axis = 1.0)
#plotTracks(snp_density_track_log,chromosome = "chr1", main = "SNP denstiy chr1")

Single-sperm dataset

scCNV <- 
  readRDS(file  = "~/Projects/rejy_2020_single-sperm-co-calling/output/outputR/analysisRDS/allSamples.setting4.rds")
x <- c("mutant","mutant","wildtype","mutant",
                                           "wildtype","wildtype")
xx <- c("Fancm-/-","Fancm-/-","Fancm+/+","Fancm-/-",
                                           "Fancm+/+","Fancm+/+")
crossover_counts <- scCNV
crossover_counts$sampleType <- plyr::mapvalues(crossover_counts$sampleGroup,from = c("WC_522",
                                                               "WC_526",
                                                               "WC_CNV_42",
                                                               "WC_CNV_43",
                                                               "WC_CNV_44",
                                                               "WC_CNV_53"),
                                    to =x)
gtrack <- GenomeAxisTrack(cex.axis = 1.0)

sc_crossover_gr <-  GRanges(seqnames = seqnames(crossover_counts), 
                        ranges = ranges(crossover_counts))
per_cell_cos <-  as.matrix(assay(crossover_counts))
per_sample_type_cos <- sapply(unique(crossover_counts$sampleType), function(sampleType){
 rowMeans(per_cell_cos[,which(colData(crossover_counts)$sampleType == sampleType)])
})

mcols(sc_crossover_gr) <- per_sample_type_cos

# crossover_count_track <- DataTrack(range = rowRanges(crossover_counts),
#                        genome = "mm10",
#                        data = data.frame(assay(crossover_counts)),
#                        name = "mean crossover counts\nacross windows",
#                        type = "heatmap",
#                        groups = crossover_counts$sampleType,
#                        col = c("cornflowerblue","tan1"),
#                        aggregateGroups = TRUE,
#                        aggregation = mean,
#                         background.title = "pink",
#                        window = 80,
#                        cex.title = 1.4,
#                        cex.axis = 1.0)

Distribute genomic feature counts into equal sized bins

cal_bin_dist <- function(new_gr,bin_size,
                         ref_genome="mm10"){
  ## bin_size supplied then.
  ## fetch the chromoInfo from GenomeInfoDb.
  ## This is only for getting the basepair lengths of the genome

  chrom_info <- GenomeInfoDb::getChromInfoFromUCSC(ref_genome)
  ## only for chr1-M
  chrom_info <- chrom_info[grep("_",chrom_info$chrom,invert = TRUE),]

  ## Check what seqnames is in new_gr and make it consistent
  if(!grepl("chr",as.character(seqnames(new_gr)[1]))){
    chrom_info$chrom <- gsub("chr","",chrom_info$chrom)
  }
  chrom_info <- chrom_info[chrom_info$chrom %in%
                             GenomeInfoDb::seqlevels(new_gr),]
  ## create Granges object for chromosomes
  seq_length <- chrom_info$size
  names(seq_length) <- chrom_info$chrom

  dna_mm10_gr <- GenomicRanges::GRanges(
    seqnames = Rle(names(seq_length)),
    ranges = IRanges(1, end = seq_length, names = names(seq_length)),
    seqlengths = seq_length)
  GenomeInfoDb::genome(dna_mm10_gr) <- ref_genome
  #dna_mm10_gr


  ## per bp distances
  GenomicRanges::mcols(new_gr) <- apply(GenomicRanges::mcols(new_gr),2,
                                        function(x) {
                                          x/GenomicRanges::width(new_gr)})
  tilewidth <- bin_size
  tiles <- GenomicRanges::tileGenome(seqinfo(dna_mm10_gr),
                                     tilewidth = tilewidth)
  binned_dna_mm10_gr <- unlist(tiles)

  new_gr <- GenomicRanges::sort(GenomeInfoDb::sortSeqlevels(new_gr))
  if(!is.null(new_gr$gc_perc)){
      new_gr <- subset(new_gr,!is.nan(new_gr$gc_perc))

  }

  bin_dist <-  lapply(colnames(mcols(new_gr)), function(group_col){

    dist_rle <- GenomicRanges::coverage(new_gr,
                                        weight = mcols(new_gr)[,group_col],
                                            )
    dist_bined <- binnedAverage(binned_dna_mm10_gr,dist_rle,
                                "dist_bin_ave")
    return(dist_bined$dist_bin_ave*width(dist_bined))

  })

  mcols(binned_dna_mm10_gr) <- do.call(cbind,bin_dist)
  colnames(mcols(binned_dna_mm10_gr)) <- colnames(mcols(new_gr))
  binned_dna_mm10_gr
}

Generate DataTracks from bin_gr

bin_size <-  1e6

bin_gr <- cal_bin_dist(sc_crossover_gr,bin_size = bin_size)
meanGC_bin_gr <- cal_bin_dist(mm10_meanGC_gr,bin_size = bin_size)
tss_bin_gr <-  cal_bin_dist(tss_gr,bin_size = bin_size)
snp_bin_gr <- cal_bin_dist(snp_density_gr,bin_size = bin_size)

geneGFTracks <- function(){

 co_track <- DataTrack(range = bin_gr,
                         genome = "mm10",
                         data = data.frame(mcols(bin_gr)),
                         name = "scCNV",
                         type = "heatmap",
                         groups = c("mutant","wildtype"),
                         col = c("cornflowerblue","tan1"),
                         aggregateGroups = TRUE,
                         aggregation = mean,
                          background.title = "pink",
                       #  window = -1,
                         cex.title = 1.4,
                         cex.axis = 1.0)  

  
  gc_track <- DataTrack(range = meanGC_bin_gr,
                         genome = "mm10",
                         data = data.frame(mcols(meanGC_bin_gr)),
                         name = "GC percent",
                         type = c("p","l"),
                         aggregation = mean,
                         background.panel = "#FFFEDB",
                         background.title = "lightblue",
                      #   window = -1,
                         cex.title = 1.4,
                         cex.axis = 1.0)
  
  snp_density_track_log <- DataTrack(range =snp_bin_gr,
                         genome = "mm10",
                         data = data.frame(log10(mcols(snp_bin_gr)[,1]+1)),
                         type=c("p","l"),
                       #  window = 98,
                       #  aggregation =  function(x) { log10(sum(x)+1)},
                         name = "SNP\ndensity\nlog10",
                         background.panel = "#FFFEDB",
                         background.title = "lightblue",
                         cex.title = 1.4,
                        cex.axis = 1.0)
  
  tss_track <- DataTrack(range =tss_bin_gr,
                         genome = "mm10",
                         data = data.frame(mcols(tss_bin_gr)),
                         type="hist",
                       #  window = 80,
                         aggregation = sum,
                         name = "TSS\ndensity",
                         background.panel = "#f3f4d3",
                         background.title = "#d3e3b6",
                         cex.title = 1.4,
                         cex.axis = 1.0)
  list(gtrack,tss_track,gc_track,snp_density_track_log,
                       co_track)
}
scCNV_alltracks <- geneGFTracks()
#c(1,8,9,11)

chroms <- paste0("chr",1:19)
ncols <- 2
nrows <- 3


for(i in seq_along(chroms)){
  if(i%%(ncols * nrows)==1) {
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrows,ncols)))
  } 
   k <- i%%(ncols * nrows)
   k <- ifelse(k==0,ncols * nrows,k)
     pushViewport(viewport(layout.pos.col = ((k - 1) %% ncols) + 1,
                          layout.pos.row = (((k) - 1) %/% ncols) + 1))
     plotTracks(scCNV_alltracks,
           chromosome =  chroms[i],
               add = TRUE,
               main =   chroms[i], sizes=c(1,2,2,2,2))
     popViewport(1)
}

scCNV Scatter plots of Crossovers versus SNP density

crossover_gr <- GRanges(seqnames = seqnames(crossover_counts), 
                        ranges = ranges(crossover_counts))
per_cell_cos <-  as.matrix(assay(crossover_counts))
per_sample_type_cos <- sapply(unique(crossover_counts$sampleType), function(sampleType){
 rowMeans(per_cell_cos[,which(colData(crossover_counts)$sampleType == sampleType)])
})
mcols(crossover_gr) <- per_sample_type_cos

plts_list <- list()

i <- 1
for(bin_size in c(1e3,1e4,1e5,1e6,1.5e6,1e7)){
  crossover_bin_gr <- cal_bin_dist(crossover_gr,bin_size = bin_size)
  snp_gr <- GRanges(seqnames = snp_density$chr,
                    ranges = IRanges(start = snp_density$Pos,
                                     width = 1),
                    count = 1)
  snp_bin_gr <- cal_bin_dist(snp_gr,bin_size = bin_size)
  snp_den_crossover_corr <- crossover_bin_gr
  mcols(snp_den_crossover_corr) <- cbind(mcols(snp_bin_gr),mcols(crossover_bin_gr))
  snp_den_crossover_corr_df <- data.frame(snp_den_crossover_corr)
  
  snp_den_crossover_corr_df$diff <- (snp_den_crossover_corr_df$mutant - snp_den_crossover_corr_df$wildtype)
  
  plot_df <- snp_den_crossover_corr_df %>% dplyr::mutate(bin_type = case_when(
    count ==0 ~ "Zero SNPs",
    count < 10 ~ "1-10 SNPs",
    count <=50 ~ "11-50 SNPs",
    count <=100 ~ "51-100 SNPs",
    TRUE ~ "High SNPs"
  )) 
  
 try( p <-  plot_df %>% dplyr::filter(count>0) %>%
           ggplot()+geom_point(mapping = aes(x = count, y = diff,color = bin_type))+
           theme_bw(base_size = 18)+
           geom_hline(mapping = aes(yintercept=0))+
           scale_x_log10(),TRUE)
  try(plts_list[[i]] <- p+facet_wrap(.~seqnames),TRUE)
  i = i+1
}
plts_list
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]


[[6]]

Crossovers per scCNV sample

crossover_count_track_perSample <- DataTrack(range = rowRanges(crossover_counts),
                       genome = "mm10",
                       data = data.frame(assay(crossover_counts)),
                       name ="expected crossover counts across chromsome windows",
                       type = "heatmap",
                       aggregateGroups=TRUE,
                       groups = crossover_counts$sampleGroup)


chroms <- paste0("chr",1:19)
ncols <- 2
nrows <- 2


for(i in seq_along(chroms)){
  if(i%%(ncols * nrows)==1) {
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrows,ncols)))
  } 
   k <- i%%(ncols * nrows)
   k <- ifelse(k==0,ncols * nrows,k)
     pushViewport(viewport(layout.pos.col = ((k - 1) %% ncols) + 1,
                          layout.pos.row = (((k) - 1) %/% ncols) + 1))
    plotTracks(list(gtrack,crossover_count_track_perSample), 
               chromosome = chroms[i],add = TRUE,
               main =   chroms[i])
     popViewport(1)
}

BC1F1 samples

bc1f1_samples <- readRDS(file = "output/outputR/analysisRDS/all_rse_count_07-20.rds")
#table(bc1f1_samples$sampleGroup)
bc1f1_samples_male <- bc1f1_samples[,bc1f1_samples$sampleGroup %in% c( "Male_HET","Male_KO","Male_WT")]
bc1f1_samples_female <- bc1f1_samples[,bc1f1_samples$sampleGroup %in% c( "Female_HET","Female_KO","Female_WT")]

Male

male_crossover_gr <-  GRanges(seqnames = seqnames(bc1f1_samples_male), 
                        ranges = ranges(bc1f1_samples_male))
per_cell_cos <-  as.matrix(assay(bc1f1_samples_male))
per_sample_type_cos <- sapply(unique(bc1f1_samples_male$sampleGroup), function(sampleGroup){
 rowMeans(per_cell_cos[,which(colData(bc1f1_samples_male)$sampleGroup == sampleGroup)])
})

mcols(male_crossover_gr) <- per_sample_type_cos


bin_size <-  1e6

male_bin_gr <- cal_bin_dist(male_crossover_gr,bin_size = bin_size)


male_co_track <- DataTrack(range = male_bin_gr,
                         genome = "mm10",
                         data = data.frame(mcols(male_bin_gr)),
                         name = "BC1F1 male",
                         type = "heatmap",
                         groups = colnames(mcols(male_bin_gr)),
                         col = c("Male_HET"="grey","Male_KO"="cornflowerblue",
                               "Male_WT"="tan1"),
                         aggregateGroups = TRUE,
                         aggregation = mean,
                         background.title = "pink",
                         
                       #  window = -1,
                         cex.title = 1.4,
                         cex.axis = 1.0)  

male_alltracks <- scCNV_alltracks
male_alltracks[[5]] <- male_co_track
#c(1,8,9,11)

chroms <- paste0("chr",1:19)
ncols <- 2
nrows <- 3


for(i in seq_along(chroms)){
  if(i%%(ncols * nrows)==1) {
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrows,ncols)))
  } 
   k <- i%%(ncols * nrows)
   k <- ifelse(k==0,ncols * nrows,k)
     pushViewport(viewport(layout.pos.col = ((k - 1) %% ncols) + 1,
                          layout.pos.row = (((k) - 1) %/% ncols) + 1))
     plotTracks(male_alltracks,
           chromosome =  chroms[i],
               add = TRUE,
               main =   chroms[i], sizes=c(1,2,2,2,2))
     popViewport(1)
}

Female

female_crossover_gr <-  GRanges(seqnames = seqnames(bc1f1_samples_female), 
                        ranges = ranges(bc1f1_samples_female))
per_cell_cos <-  as.matrix(assay(bc1f1_samples_female))
per_sample_type_cos <- sapply(unique(bc1f1_samples_female$sampleGroup), function(sampleGroup){
 rowMeans(per_cell_cos[,which(colData(bc1f1_samples_female)$sampleGroup == sampleGroup)])
})

mcols(female_crossover_gr) <- per_sample_type_cos


bin_size <-  1e6

female_bin_gr <- cal_bin_dist(female_crossover_gr,bin_size = bin_size)


female_co_track <- DataTrack(range = female_bin_gr,
                         genome = "mm10",
                         data = data.frame(mcols(female_bin_gr)),
                         name = "BC1F1 female",
                         type = "heatmap",
                         groups = colnames(mcols(female_bin_gr)),
                         col = c("Female_HET"="grey","Female_KO"="cornflowerblue",
                               "Female_WT"="tan1"),
                         aggregateGroups = TRUE,
                         aggregation = mean,
                         background.title = "pink",
                         
                       #  window = -1,
                         cex.title = 1.4,
                         cex.axis = 1.0)  

female_alltracks <- scCNV_alltracks
female_alltracks[[5]] <- female_co_track
#c(1,8,9,11)

chroms <- paste0("chr",1:19)
ncols <- 2
nrows <- 3


for(i in seq_along(chroms)){
  if(i%%(ncols * nrows)==1) {
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrows,ncols)))
  } 
   k <- i%%(ncols * nrows)
   k <- ifelse(k==0,ncols * nrows,k)
     pushViewport(viewport(layout.pos.col = ((k - 1) %% ncols) + 1,
                          layout.pos.row = (((k) - 1) %/% ncols) + 1))
     plotTracks(female_alltracks,
           chromosome =  chroms[i],
               add = TRUE,
               main =   chroms[i], sizes=c(1,2,2,2,2))
     popViewport(1)
}

Session info

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Rocky Linux 8.4 (Green Obsidian)

Matrix products: default
BLAS/LAPACK: /usr/lib64/libopenblasp-r0.3.12.so

locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
 [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] grid      parallel  stats4    stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] biomaRt_2.48.3              doParallel_1.0.16          
 [3] iterators_1.0.13            foreach_1.5.1              
 [5] Gviz_1.36.2                 gridExtra_2.3              
 [7] SummarizedExperiment_1.22.0 Biobase_2.52.0             
 [9] GenomicRanges_1.44.0        GenomeInfoDb_1.28.4        
[11] IRanges_2.26.0              S4Vectors_0.30.1           
[13] BiocGenerics_0.38.0         MatrixGenerics_1.4.3       
[15] matrixStats_0.61.0          dplyr_1.0.7                
[17] comapr_0.99.27              ggrepel_0.9.1              
[19] ggplot2_3.3.5               readxl_1.3.1               

loaded via a namespace (and not attached):
  [1] backports_1.2.1          circlize_0.4.13          Hmisc_4.5-0             
  [4] workflowr_1.6.2          BiocFileCache_2.0.0      plyr_1.8.6              
  [7] lazyeval_0.2.2           splines_4.1.0            BiocParallel_1.26.2     
 [10] digest_0.6.28            ensembldb_2.16.4         htmltools_0.5.2         
 [13] fansi_0.5.0              magrittr_2.0.1           checkmate_2.0.0         
 [16] memoise_2.0.0            BSgenome_1.60.0          cluster_2.1.2           
 [19] Biostrings_2.60.2        prettyunits_1.1.1        jpeg_0.1-9              
 [22] colorspace_2.0-2         blob_1.2.2               rappdirs_0.3.3          
 [25] xfun_0.26                crayon_1.4.1             RCurl_1.98-1.5          
 [28] jsonlite_1.7.2           survival_3.2-11          VariantAnnotation_1.38.0
 [31] glue_1.4.2               gtable_0.3.0             zlibbioc_1.38.0         
 [34] XVector_0.32.0           DelayedArray_0.18.0      shape_1.4.6             
 [37] scales_1.1.1             DBI_1.1.1                Rcpp_1.0.7              
 [40] viridisLite_0.4.0        progress_1.2.2           htmlTable_2.2.1         
 [43] foreign_0.8-81           bit_4.0.4                Formula_1.2-4           
 [46] htmlwidgets_1.5.4        httr_1.4.2               RColorBrewer_1.1-2      
 [49] ellipsis_0.3.2           farver_2.1.0             pkgconfig_2.0.3         
 [52] XML_3.99-0.8             nnet_7.3-16              dbplyr_2.1.1            
 [55] utf8_1.2.2               labeling_0.4.2           tidyselect_1.1.1        
 [58] rlang_0.4.11             reshape2_1.4.4           later_1.3.0             
 [61] AnnotationDbi_1.54.1     munsell_0.5.0            cellranger_1.1.0        
 [64] tools_4.1.0              cachem_1.0.6             generics_0.1.0          
 [67] RSQLite_2.2.8            evaluate_0.14            stringr_1.4.0           
 [70] fastmap_1.1.0            yaml_2.2.1               knitr_1.36              
 [73] bit64_4.0.5              fs_1.5.0                 purrr_0.3.4             
 [76] KEGGREST_1.32.0          AnnotationFilter_1.16.0  xml2_1.3.2              
 [79] compiler_4.1.0           rstudioapi_0.13          plotly_4.9.4.1          
 [82] filelock_1.0.2           curl_4.3.2               png_0.1-7               
 [85] tibble_3.1.4             stringi_1.7.4            highr_0.9               
 [88] GenomicFeatures_1.44.2   lattice_0.20-44          ProtGenerics_1.24.0     
 [91] Matrix_1.3-3             vctrs_0.3.8              pillar_1.6.3            
 [94] lifecycle_1.0.1          jquerylib_0.1.4          GlobalOptions_0.1.2     
 [97] data.table_1.14.2        bitops_1.0-7             httpuv_1.6.3            
[100] rtracklayer_1.52.1       R6_2.5.1                 BiocIO_1.2.0            
[103] latticeExtra_0.6-29      promises_1.2.0.1         codetools_0.2-18        
[106] dichromat_2.0-0          assertthat_0.2.1         rprojroot_2.0.2         
[109] rjson_0.2.20             withr_2.4.2              GenomicAlignments_1.28.0
[112] Rsamtools_2.8.0          GenomeInfoDbData_1.2.6   hms_1.1.1               
[115] rpart_4.1-15             tidyr_1.1.4              rmarkdown_2.11          
[118] git2r_0.28.0             biovizBase_1.40.0        base64enc_0.1-3         
[121] restfulr_0.0.13         

devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                           
 version  R version 4.1.0 (2021-05-18)    
 os       Rocky Linux 8.4 (Green Obsidian)
 system   x86_64, linux-gnu               
 ui       X11                             
 language (EN)                            
 collate  en_AU.UTF-8                     
 ctype    en_AU.UTF-8                     
 tz       Australia/Melbourne             
 date     2021-10-13                      

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version  date       lib source                         
 AnnotationDbi          1.54.1   2021-06-08 [1] Bioconductor                   
 AnnotationFilter       1.16.0   2021-05-19 [1] Bioconductor                   
 assertthat             0.2.1    2019-03-21 [1] CRAN (R 4.1.0)                 
 backports              1.2.1    2020-12-09 [1] CRAN (R 4.1.0)                 
 base64enc              0.1-3    2015-07-28 [1] CRAN (R 4.1.0)                 
 Biobase              * 2.52.0   2021-05-19 [1] Bioconductor                   
 BiocFileCache          2.0.0    2021-05-19 [1] Bioconductor                   
 BiocGenerics         * 0.38.0   2021-05-19 [1] Bioconductor                   
 BiocIO                 1.2.0    2021-05-19 [1] Bioconductor                   
 BiocParallel           1.26.2   2021-08-22 [1] Bioconductor                   
 biomaRt              * 2.48.3   2021-08-15 [1] Bioconductor                   
 Biostrings             2.60.2   2021-08-05 [1] Bioconductor                   
 biovizBase             1.40.0   2021-05-19 [1] Bioconductor                   
 bit                    4.0.4    2020-08-04 [1] CRAN (R 4.1.0)                 
 bit64                  4.0.5    2020-08-30 [1] CRAN (R 4.1.0)                 
 bitops                 1.0-7    2021-04-24 [1] CRAN (R 4.1.0)                 
 blob                   1.2.2    2021-07-23 [1] CRAN (R 4.1.0)                 
 BSgenome               1.60.0   2021-05-19 [1] Bioconductor                   
 cachem                 1.0.6    2021-08-19 [1] CRAN (R 4.1.0)                 
 callr                  3.7.0    2021-04-20 [1] CRAN (R 4.1.0)                 
 cellranger             1.1.0    2016-07-27 [1] CRAN (R 4.1.0)                 
 checkmate              2.0.0    2020-02-06 [1] CRAN (R 4.1.0)                 
 circlize               0.4.13   2021-06-09 [1] CRAN (R 4.1.0)                 
 cli                    3.0.1    2021-07-17 [1] CRAN (R 4.1.0)                 
 cluster                2.1.2    2021-04-17 [2] CRAN (R 4.1.0)                 
 codetools              0.2-18   2020-11-04 [2] CRAN (R 4.1.0)                 
 colorspace             2.0-2    2021-06-24 [1] CRAN (R 4.1.0)                 
 comapr               * 0.99.27  2021-09-30 [1] Github (ruqianl/comapr@870dfef)
 crayon                 1.4.1    2021-02-08 [1] CRAN (R 4.1.0)                 
 curl                   4.3.2    2021-06-23 [1] CRAN (R 4.1.0)                 
 data.table             1.14.2   2021-09-27 [1] CRAN (R 4.1.0)                 
 DBI                    1.1.1    2021-01-15 [1] CRAN (R 4.1.0)                 
 dbplyr                 2.1.1    2021-04-06 [1] CRAN (R 4.1.0)                 
 DelayedArray           0.18.0   2021-05-19 [1] Bioconductor                   
 desc                   1.4.0    2021-09-28 [1] CRAN (R 4.1.0)                 
 devtools               2.4.2    2021-06-07 [1] CRAN (R 4.1.0)                 
 dichromat              2.0-0    2013-01-24 [1] CRAN (R 4.1.0)                 
 digest                 0.6.28   2021-09-23 [1] CRAN (R 4.1.0)                 
 doParallel           * 1.0.16   2020-10-16 [1] CRAN (R 4.1.0)                 
 dplyr                * 1.0.7    2021-06-18 [1] CRAN (R 4.1.0)                 
 ellipsis               0.3.2    2021-04-29 [1] CRAN (R 4.1.0)                 
 ensembldb              2.16.4   2021-08-05 [1] Bioconductor                   
 evaluate               0.14     2019-05-28 [1] CRAN (R 4.1.0)                 
 fansi                  0.5.0    2021-05-25 [1] CRAN (R 4.1.0)                 
 farver                 2.1.0    2021-02-28 [1] CRAN (R 4.1.0)                 
 fastmap                1.1.0    2021-01-25 [1] CRAN (R 4.1.0)                 
 filelock               1.0.2    2018-10-05 [1] CRAN (R 4.1.0)                 
 foreach              * 1.5.1    2020-10-15 [1] CRAN (R 4.1.0)                 
 foreign                0.8-81   2020-12-22 [2] CRAN (R 4.1.0)                 
 Formula                1.2-4    2020-10-16 [1] CRAN (R 4.1.0)                 
 fs                     1.5.0    2020-07-31 [1] CRAN (R 4.1.0)                 
 generics               0.1.0    2020-10-31 [1] CRAN (R 4.1.0)                 
 GenomeInfoDb         * 1.28.4   2021-09-05 [1] Bioconductor                   
 GenomeInfoDbData       1.2.6    2021-09-30 [1] Bioconductor                   
 GenomicAlignments      1.28.0   2021-05-19 [1] Bioconductor                   
 GenomicFeatures        1.44.2   2021-08-26 [1] Bioconductor                   
 GenomicRanges        * 1.44.0   2021-05-19 [1] Bioconductor                   
 ggplot2              * 3.3.5    2021-06-25 [1] CRAN (R 4.1.0)                 
 ggrepel              * 0.9.1    2021-01-15 [1] CRAN (R 4.1.0)                 
 git2r                  0.28.0   2021-01-10 [1] CRAN (R 4.1.0)                 
 GlobalOptions          0.1.2    2020-06-10 [1] CRAN (R 4.1.0)                 
 glue                   1.4.2    2020-08-27 [1] CRAN (R 4.1.0)                 
 gridExtra            * 2.3      2017-09-09 [1] CRAN (R 4.1.0)                 
 gtable                 0.3.0    2019-03-25 [1] CRAN (R 4.1.0)                 
 Gviz                 * 1.36.2   2021-07-04 [1] Bioconductor                   
 highr                  0.9      2021-04-16 [1] CRAN (R 4.1.0)                 
 Hmisc                  4.5-0    2021-02-28 [1] CRAN (R 4.1.0)                 
 hms                    1.1.1    2021-09-26 [1] CRAN (R 4.1.0)                 
 htmlTable              2.2.1    2021-05-18 [1] CRAN (R 4.1.0)                 
 htmltools              0.5.2    2021-08-25 [1] CRAN (R 4.1.0)                 
 htmlwidgets            1.5.4    2021-09-08 [1] CRAN (R 4.1.0)                 
 httpuv                 1.6.3    2021-09-09 [1] CRAN (R 4.1.0)                 
 httr                   1.4.2    2020-07-20 [1] CRAN (R 4.1.0)                 
 IRanges              * 2.26.0   2021-05-19 [1] Bioconductor                   
 iterators            * 1.0.13   2020-10-15 [1] CRAN (R 4.1.0)                 
 jpeg                   0.1-9    2021-07-24 [1] CRAN (R 4.1.0)                 
 jquerylib              0.1.4    2021-04-26 [1] CRAN (R 4.1.0)                 
 jsonlite               1.7.2    2020-12-09 [1] CRAN (R 4.1.0)                 
 KEGGREST               1.32.0   2021-05-19 [1] Bioconductor                   
 knitr                  1.36     2021-09-29 [1] CRAN (R 4.1.0)                 
 labeling               0.4.2    2020-10-20 [1] CRAN (R 4.1.0)                 
 later                  1.3.0    2021-08-18 [1] CRAN (R 4.1.0)                 
 lattice                0.20-44  2021-05-02 [2] CRAN (R 4.1.0)                 
 latticeExtra           0.6-29   2019-12-19 [1] CRAN (R 4.1.0)                 
 lazyeval               0.2.2    2019-03-15 [1] CRAN (R 4.1.0)                 
 lifecycle              1.0.1    2021-09-24 [1] CRAN (R 4.1.0)                 
 magrittr               2.0.1    2020-11-17 [1] CRAN (R 4.1.0)                 
 Matrix                 1.3-3    2021-05-04 [2] CRAN (R 4.1.0)                 
 MatrixGenerics       * 1.4.3    2021-08-26 [1] Bioconductor                   
 matrixStats          * 0.61.0   2021-09-17 [1] CRAN (R 4.1.0)                 
 memoise                2.0.0    2021-01-26 [1] CRAN (R 4.1.0)                 
 munsell                0.5.0    2018-06-12 [1] CRAN (R 4.1.0)                 
 nnet                   7.3-16   2021-05-03 [2] CRAN (R 4.1.0)                 
 pillar                 1.6.3    2021-09-26 [1] CRAN (R 4.1.0)                 
 pkgbuild               1.2.0    2020-12-15 [1] CRAN (R 4.1.0)                 
 pkgconfig              2.0.3    2019-09-22 [1] CRAN (R 4.1.0)                 
 pkgload                1.2.2    2021-09-11 [1] CRAN (R 4.1.0)                 
 plotly                 4.9.4.1  2021-06-18 [1] CRAN (R 4.1.0)                 
 plyr                   1.8.6    2020-03-03 [1] CRAN (R 4.1.0)                 
 png                    0.1-7    2013-12-03 [1] CRAN (R 4.1.0)                 
 prettyunits            1.1.1    2020-01-24 [1] CRAN (R 4.1.0)                 
 processx               3.5.2    2021-04-30 [1] CRAN (R 4.1.0)                 
 progress               1.2.2    2019-05-16 [1] CRAN (R 4.1.0)                 
 promises               1.2.0.1  2021-02-11 [1] CRAN (R 4.1.0)                 
 ProtGenerics           1.24.0   2021-05-19 [1] Bioconductor                   
 ps                     1.6.0    2021-02-28 [1] CRAN (R 4.1.0)                 
 purrr                  0.3.4    2020-04-17 [1] CRAN (R 4.1.0)                 
 R6                     2.5.1    2021-08-19 [1] CRAN (R 4.1.0)                 
 rappdirs               0.3.3    2021-01-31 [1] CRAN (R 4.1.0)                 
 RColorBrewer           1.1-2    2014-12-07 [1] CRAN (R 4.1.0)                 
 Rcpp                   1.0.7    2021-07-07 [1] CRAN (R 4.1.0)                 
 RCurl                  1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)                 
 readxl               * 1.3.1    2019-03-13 [1] CRAN (R 4.1.0)                 
 remotes                2.4.1    2021-09-29 [1] CRAN (R 4.1.0)                 
 reshape2               1.4.4    2020-04-09 [1] CRAN (R 4.1.0)                 
 restfulr               0.0.13   2017-08-06 [1] CRAN (R 4.1.0)                 
 rjson                  0.2.20   2018-06-08 [1] CRAN (R 4.1.0)                 
 rlang                  0.4.11   2021-04-30 [1] CRAN (R 4.1.0)                 
 rmarkdown              2.11     2021-09-14 [1] CRAN (R 4.1.0)                 
 rpart                  4.1-15   2019-04-12 [2] CRAN (R 4.1.0)                 
 rprojroot              2.0.2    2020-11-15 [1] CRAN (R 4.1.0)                 
 Rsamtools              2.8.0    2021-05-19 [1] Bioconductor                   
 RSQLite                2.2.8    2021-08-21 [1] CRAN (R 4.1.0)                 
 rstudioapi             0.13     2020-11-12 [1] CRAN (R 4.1.0)                 
 rtracklayer            1.52.1   2021-08-15 [1] Bioconductor                   
 S4Vectors            * 0.30.1   2021-09-26 [1] Bioconductor                   
 scales                 1.1.1    2020-05-11 [1] CRAN (R 4.1.0)                 
 sessioninfo            1.1.1    2018-11-05 [1] CRAN (R 4.1.0)                 
 shape                  1.4.6    2021-05-19 [1] CRAN (R 4.1.0)                 
 stringi                1.7.4    2021-08-25 [1] CRAN (R 4.1.0)                 
 stringr                1.4.0    2019-02-10 [1] CRAN (R 4.1.0)                 
 SummarizedExperiment * 1.22.0   2021-05-19 [1] Bioconductor                   
 survival               3.2-11   2021-04-26 [2] CRAN (R 4.1.0)                 
 testthat               3.0.4    2021-07-01 [1] CRAN (R 4.1.0)                 
 tibble                 3.1.4    2021-08-25 [1] CRAN (R 4.1.0)                 
 tidyr                  1.1.4    2021-09-27 [1] CRAN (R 4.1.0)                 
 tidyselect             1.1.1    2021-04-30 [1] CRAN (R 4.1.0)                 
 usethis                2.0.1    2021-02-10 [1] CRAN (R 4.1.0)                 
 utf8                   1.2.2    2021-07-24 [1] CRAN (R 4.1.0)                 
 VariantAnnotation      1.38.0   2021-05-19 [1] Bioconductor                   
 vctrs                  0.3.8    2021-04-29 [1] CRAN (R 4.1.0)                 
 viridisLite            0.4.0    2021-04-13 [1] CRAN (R 4.1.0)                 
 withr                  2.4.2    2021-04-18 [1] CRAN (R 4.1.0)                 
 workflowr              1.6.2    2020-04-30 [1] CRAN (R 4.1.0)                 
 xfun                   0.26     2021-09-14 [1] CRAN (R 4.1.0)                 
 XML                    3.99-0.8 2021-09-17 [1] CRAN (R 4.1.0)                 
 xml2                   1.3.2    2020-04-23 [1] CRAN (R 4.1.0)                 
 XVector                0.32.0   2021-05-19 [1] Bioconductor                   
 yaml                   2.2.1    2020-02-01 [1] CRAN (R 4.1.0)                 
 zlibbioc               1.38.0   2021-05-19 [1] Bioconductor                   

[1] /mnt/beegfs/mccarthy/scratch/general/rlyu/Software/R/Rlib/4.1.0/yeln
[2] /opt/R/4.1.0/lib/R/library