Last updated: 2021-10-13
Checks: 6 1
Knit directory: yeln_2019_spermtyping/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190102)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 6c2a673. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: .config/
Ignored: analysis/.Rhistory
Ignored: data/F21FTSAPHT0641MOUobtfR/
Untracked files:
Untracked: .DS_Store
Untracked: .Renviron
Untracked: .bulkDNAseq_BGI-extra.snk.swp
Untracked: .cache/
Untracked: .snakemake/
Untracked: .theano/
Untracked: 2021-07-13_scRNA-seq-analysis-of-sperm-cells-from-Fancm-mutant-and-Fancm-wildtype-mice.Rmd
Untracked: 2021-07-13_scRNA-seq-analysis-of-sperm-cells-from-Fancm-mutant-and-Fancm-wildtype-mice_files/
Untracked: 2021-07-23_FANCM-manuscript-figures.Rmd
Untracked: 2021-09-10_BC1F1-copy-number-analysis.Rmd
Untracked: Rplots.pdf
Untracked: Snakefile_AFtracks.log.out
Untracked: Snakefile_BC1F1BGIseq2021.snk
Untracked: Snakefile_DNAseq-BGIseq-bc1f1-hmm-2021.log.out
Untracked: Snakefile_DNAseq-BGIseq-bc1f1-hmm-extra-11.log.out
Untracked: Snakefile_DNAseq-BGIseq-bcf-hmm.log.out
Untracked: Snakefile_DNAseq-F2F3-hmm.snk.log.out
Untracked: Snakefile_DNAseq-agrf-hmm.snk.log.out
Untracked: Snakefile_DNAseq-mos.log.out
Untracked: Snakefile_DNAseqF2F3.log.out
Untracked: Snakefile_alignATACseq.log.out
Untracked: Snakefile_bulkATACseq.snk
Untracked: Snakefile_bulkBGILowTrans.log.out
Untracked: Snakefile_bulkagrcountCO.log.out
Untracked: Snakefile_bulkagrf.log.out
Untracked: Snakefile_bulkagrfLowTrans.log.out
Untracked: Snakefile_bulkagrfQC.log.out
Untracked: Snakefile_bulkagrfSegRatio.log.out
Untracked: Snakefile_bulkagrffilterCO.log.out
Untracked: Snakefile_bulkbc1f1-2021.log.out
Untracked: Snakefile_bulkbgi.log.out
Untracked: Snakefile_bulkbgifilterCO.log.out
Untracked: Snakefile_cellChrSNP.err.log.out
Untracked: Snakefile_extraBulkbgi.log.out
Untracked: Snakefile_plotDiagnosticAFtracks.snk
Untracked: Snakefile_runCNVcaller.snk
Untracked: Snakefile_runGCNV.log.out
Untracked: Snakefile_runHMMCNV.log.out
Untracked: Snakefile_runcsnp-rnaseq.snk
Untracked: Snakefile_split.fq.out
Untracked: Snakefile_tag-fastq-bc.snk
Untracked: Snakefile_tag.err.log.out
Untracked: W12/
Untracked: WC_522/
Untracked: WC_526/
Untracked: WC_CNV_42/
Untracked: WC_CNV_42_firstBatch/
Untracked: WC_CNV_43/
Untracked: WC_CNV_43_firstBatch/
Untracked: WC_CNV_44/
Untracked: WC_CNV_44_firstBatch/
Untracked: WC_CNV_53/
Untracked: WC_CNV_53_firstBatch/
Untracked: WC_CNV_md5.txt
Untracked: WC_Sp/
Untracked: analysis/2021-01-14_lowCov-DNAseqAGRF-coverage.Rmd
Untracked: analysis/2021-07-13_scRNA-seq analysis of sperm cells from Fancm-mutant and Fancm-wildtype mice.Rmd
Untracked: analysis/2021-07-14_ATACseq-coverage.Rmd
Untracked: analysis/2021-07-26_BC1F1-SampleCNVs.Rmd
Untracked: analysis/2021-10-13_FANCM-manuscript-Crossovers-genomic-features.Rmd
Untracked: analysis/figure/
Untracked: analysis/nstates.png
Untracked: bc1f1_chr19bin_state_gr.rds
Untracked: code/bc1f1-af-co-tracks.R
Untracked: code/binom-seg-test-scCNV.R
Untracked: code/investigateSegsCNV.R
Untracked: code/run_sccomp.R
Untracked: code/scCNV_CO_SNP_density.R
Untracked: dag-scCNV.svg
Untracked: dag.svg
Untracked: data/10xCNV/
Untracked: data/737K-crdna-v1.txt
Untracked: data/All_data_May_to_August_2019.xlsx
Untracked: data/BC1F1-bgi-2021.txt
Untracked: data/BC1F1-bgi-extra_2021/
Untracked: data/BC1F1-bgi-extra_2021_samplemeta.txt
Untracked: data/BC1F1-bgi-fq-path_2021/
Untracked: data/F20FTSAPHT0350_MUSyfqR_samplemeta.txt
Untracked: data/F2f3_samplemeta.txt
Untracked: data/agrfBulkDNA/
Untracked: data/agrf_samplefqdir.txt
Untracked: data/agrf_samplemeta.txt
Untracked: data/atac_seq/
Untracked: data/cellSNP_W12-time2.txt/
Untracked: data/convertWIG2bed.sh
Untracked: data/convertWIG2bed_2.sh
Untracked: data/fancm_mice/
Untracked: data/fancm_tubule_blinded_counts.xlsx
Untracked: data/genLn.sh
Untracked: data/hg19.gc5Base.txt.gz
Untracked: data/mm10.100k.bed
Untracked: data/mm10.100k.meanGC.bed
Untracked: data/mm10.100k.meanGC.chr1.bed
Untracked: data/mm10.100k.meanGC.chr3.bed
Untracked: data/mm10.1m.bed
Untracked: data/mm10.1m.meanGC.bed
Untracked: data/mm10.1m.meanGC.chr1.bed
Untracked: data/mm10.1m.meanGC.chr10.bed
Untracked: data/mm10.1m.meanGC.chr11.bed
Untracked: data/mm10.1m.meanGC.chr12.bed
Untracked: data/mm10.1m.meanGC.chr13.bed
Untracked: data/mm10.1m.meanGC.chr14.bed
Untracked: data/mm10.1m.meanGC.chr15.bed
Untracked: data/mm10.1m.meanGC.chr16.bed
Untracked: data/mm10.1m.meanGC.chr17.bed
Untracked: data/mm10.1m.meanGC.chr18.bed
Untracked: data/mm10.1m.meanGC.chr19.bed
Untracked: data/mm10.1m.meanGC.chr2.bed
Untracked: data/mm10.1m.meanGC.chr3.bed
Untracked: data/mm10.1m.meanGC.chr4.bed
Untracked: data/mm10.1m.meanGC.chr5.bed
Untracked: data/mm10.1m.meanGC.chr6.bed
Untracked: data/mm10.1m.meanGC.chr7.bed
Untracked: data/mm10.1m.meanGC.chr8.bed
Untracked: data/mm10.1m.meanGC.chr9.bed
Untracked: data/mm10.1m.sorted.bed
Untracked: data/mm10.bed
Untracked: data/mm10.gc5Base.bed
Untracked: data/mm10.gc5Base.chr1.bed
Untracked: data/mm10.gc5Base.chr10.bed
Untracked: data/mm10.gc5Base.chr11.bed
Untracked: data/mm10.gc5Base.chr12.bed
Untracked: data/mm10.gc5Base.chr13.bed
Untracked: data/mm10.gc5Base.chr14.bed
Untracked: data/mm10.gc5Base.chr15.bed
Untracked: data/mm10.gc5Base.chr16.bed
Untracked: data/mm10.gc5Base.chr17.bed
Untracked: data/mm10.gc5Base.chr18.bed
Untracked: data/mm10.gc5Base.chr19.bed
Untracked: data/mm10.gc5Base.chr2.bed
Untracked: data/mm10.gc5Base.chr3.bed
Untracked: data/mm10.gc5Base.chr4.bed
Untracked: data/mm10.gc5Base.chr5.bed
Untracked: data/mm10.gc5Base.chr6.bed
Untracked: data/mm10.gc5Base.chr7.bed
Untracked: data/mm10.gc5Base.chr8.bed
Untracked: data/mm10.gc5Base.chr9.bed
Untracked: data/mm10.gc5Base.wib
Untracked: data/mm10.gc5Base.wig.gz
Untracked: data/mm10.gc5Base.wigVarStep.gz
Untracked: data/rawNames.txt
Untracked: data/slurm-59654.out
Untracked: data/slurm-59655.out
Untracked: data/slurm-59670.out
Untracked: docs/figure/2020-10-20_BulkDNASamples-CO-genetic-dist.Rmd/
Untracked: docs/site_libs/accessible-code-block-0.0.1/
Untracked: envs/demultiplex.yml
Untracked: envs/env_bulkDNA.yml
Untracked: envs/mosdepth.yaml
Untracked: fastp.html
Untracked: fastp.json
Untracked: job_tracking/
Untracked: multipage.pdf
Untracked: nohup.out
Untracked: nstates.png
Untracked: nstates1.png
Untracked: old_Renv
Untracked: output/.DS_Store
Untracked: output/10xCNV/
Untracked: output/atac_seq/
Untracked: output/bcf/
Untracked: output/bulkDNAseq/
Untracked: output/bulkDNAseq_BC1F1BGI2021/
Untracked: output/bulkDNAseq_BGI/
Untracked: output/bulkDNAseq_F2F3/
Untracked: output/bulkDNAseq_agrf/
Untracked: output/figures/
Untracked: output/gCNV/
Untracked: output/outputR/
Untracked: output/scCNV/
Untracked: output/scRNA/
Untracked: references/BC1F1_samples-2020-07-08.xlsx
Untracked: references/BC1F1_samples-2020-10-20.xlsx
Untracked: references/BC1F1_summary.xlsx
Untracked: references/Copy of crossover_count.csv
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.WC_522_het.vcf.gz
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.WC_522_het.vcf.gz.csi
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.WC_522_het.vcf.gz.tbi
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.pos.only.tsv
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.vcf.gz
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.vcf.gz.csi
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.WC_522_het.vcf.gz.tbi
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.txt
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.gz
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.gz.csi
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.stat
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.vcf.gz
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.vcf.gz.csi
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.gz
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.gz.csi
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.gz.tbi
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.idx
Untracked: references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.var.vcf.stat
Untracked: references/cellranger-ref-dna-mm10/
Untracked: references/cellranger-ref-mm10/
Untracked: references/chrs.map
Untracked: references/chrs_r.map
Untracked: references/col1
Untracked: references/col2
Untracked: references/k36.umap.bed
Untracked: references/k36.umap.bed.idx
Untracked: references/mm10_contig_ploidy_priors.tsv
Untracked: references/scRNAseq_gene_sets.xlsx
Untracked: references/wasp/
Untracked: retag-0-mis.log.txt
Untracked: runCountCB.out
Untracked: run_countcb.snk
Untracked: runsCNV.out
Untracked: runsCsnp.out
Untracked: split.log.txt
Untracked: sslurm-42367.out
Untracked: submit-AlignBulkATAC.sh
Untracked: submit-runAlignBC1F1BGI.sh
Untracked: submit-runBulkDNAagrf.sh
Untracked: submit-runBulkDNAbgi.sh
Untracked: submit-runBulkDNAbgiExtra.sh
Untracked: submit-runCNV.sh
Untracked: submit-runCTCB.sh
Untracked: submit-runDNAseq-BGIseq-bc1f1-hmm-2021.sh
Untracked: submit-runDNAseq-BGIseq-bc1f1-hmm-Extra-2021.sh
Untracked: submit-runDNAseq-BGIseq-bcf-hmm.sh
Untracked: submit-runDNAseqF2F3.sh
Untracked: submit-runHMMBulkAGRF.sh
Untracked: submit-runHMMBulkAGRFBCF.sh
Untracked: submit-runHMMF2F3.sh
Untracked: submit-runMos.sh
Untracked: submit-runPlotAFBC1F1.sh
Untracked: submit-runSNK-cellchrsnp.sh
Untracked: submit-runSNK-hmm-CNV.sh
Untracked: submit-runcsnp.sh
Untracked: submit-rungCNV.sh
Untracked: submit-sbatch.sh
Untracked: test.png
Untracked: theano_base/
Untracked: tmp/
Untracked: yeln_2019_spermtyping.Rproj
Unstaged changes:
Modified: .gitignore
Modified: .gitlab-ci.yml
Modified: CITATION
Modified: LICENSE
Modified: Snakefile_DNAseq-BGIseq-bcf-hmm.snk
Modified: Snakefile_DNAseq-agrf-hmm.snk
Modified: Snakefile_DNAseq-chr-plot.snk
Modified: Snakefile_HMM-scCNV
Modified: Snakefile_bcf
Modified: Snakefile_bulkDNAseq-mos.snk
Modified: Snakefile_bulkDNAseq.snk
Modified: Snakefile_cluster
Modified: Snakefile_gatk
Modified: Snakefile_remap
Modified: _workflowr.yml
Modified: analysis/2019-04-13_expl-data-analysis_2019-04-12-10x-run.Rmd
Modified: analysis/2020-01-02_W12_smcelss_C9_bcftools.Rmd
Modified: analysis/2020-01-03_W11-small-cells.Rmd
Modified: analysis/2020-01-03_W11-vartrix-diploid.Rmd
Modified: analysis/2020-01-03_W11-vartrix.Rmd
Modified: analysis/2020-01-03_W11_get_smcells.Rmd
Modified: analysis/2020-01-03_W12-vartrix.Rmd
Modified: analysis/2020-05-01_10xCNV-summary.Rmd
Modified: analysis/2020-05-07_WC-522-bulk-sperm-vcf.Rmd
Modified: analysis/2020-05-11_WC-522-filtered-variants-single-cell.Rmd
Modified: analysis/2020-05-15_WC_522-wasp-Filtering.Rmd
Modified: analysis/2020-05-15_barcode-calling-10xCNV.Rmd
Modified: analysis/2020-05-19_SNP-gaps-and-distribution-analysis.Rmd
Modified: analysis/2020-05-25_FVB-BL6-Control-cell-for-estimating-HMM-pars.Rmd
Modified: analysis/2020-06-02_WC-522-nocell-group5.Rmd
Modified: analysis/2020-06-02_mix-haploid-cells.Rmd
Modified: analysis/2020-06-15_lowCov-DNAseq-summary-stats.Rmd
Modified: analysis/2020-06-16_detect-CO-bulkDNAseq-1X.Rmd
Modified: analysis/2020-06-17_scDNA-viterbi-CO-detection.Rmd
Modified: analysis/2020-07-06_bulk-samples-theta-estimate.Rmd
Modified: analysis/2020-07-14_agrf-genotyping-markers.Rmd
Modified: analysis/2020-07-27_state-bias-diagnosis.Rmd
Modified: analysis/2020-08-13_Marker-based-genetic-map.Rmd
Modified: analysis/2020-08-14_Genetic-map-hot-spots-bulk-BGI.Rmd
Modified: analysis/2020-08-18_total-genetic-dist-genome.Rmd
Modified: analysis/2020-10-06_scCNV-CO-genetic-dist.Rmd
Modified: analysis/2020-10-20_BulkDNASamples-CO-genetic-dist.Rmd
Modified: analysis/2020-10-20_agrfBulkDNASamples-WT-HET-CO-genetic-dist.Rmd
Modified: analysis/2020-11-24_BulkSamples-CrossoverAnalysisUpdates.Rmd
Modified: analysis/2020-7-22_detectCO-BulkDNA-corrected.Rmd
Modified: analysis/2021-02-09_F2F3-samples-CO-analysis.Rmd
Modified: analysis/2021-02-22_Investigation-Female-HET.Rmd
Modified: analysis/2021-06-28_BulkBC1F1-samples.Rmd
Modified: analysis/2021-06-29_exploring-data-batches-bulk-bc1f1-samples.Rmd
Modified: analysis/2021-07-23_FANCM-manuscript-figures-2.Rmd
Modified: analysis/2021-07-25_FANCM-manuscript-figures-3.Rmd
Modified: analysis/SNPs_hp_dp_cells.pptx
Modified: analysis/W11_W12_pooled_clustering.Rmd
Modified: analysis/W11_clustering.Rmd
Modified: analysis/W11_further_analysis.Rmd
Modified: analysis/W12_clustering.Rmd
Modified: analysis/about.Rmd
Modified: analysis/expl_W12_C28_GATK_AF_plot.Rmd
Modified: analysis/expl_W12_C28_cellsnp_AF_plot.Rmd
Modified: analysis/expl_W12_C2_cellsnp_AF_plot.Rmd
Modified: analysis/expl_W12_GATK_AF_plot.Rmd
Modified: analysis/expl_W12_bcftools_AF_plot.Rmd
Modified: analysis/expl_W12_bcftools_AF_plot_dp.Rmd
Modified: analysis/expl_W12_cellsnp_AF_plot.Rmd
Modified: analysis/license.Rmd
Modified: analysis/scRNAseq-analysis-outline.Rmd
Modified: bulkDNAseq_BGI-30X.snk
Modified: code/README.md
Modified: code/badSampleBulkDNAseq.R
Modified: code/bulk_BL6_FVB_rate0_estimate.R
Modified: code/cal_ref_ratio.R
Modified: code/cc_score.R
Modified: code/cellCO-QCControl.R
Modified: code/cellQualityCheck.R
Modified: code/cellQualityCheck.old.R
Modified: code/checkCoverageBulkseq.R
Modified: code/checkF2F3trios.R
Modified: code/checkF2F3triosLtrans.R
Modified: code/check_co.R
Modified: code/cluster.R
Modified: code/combine_calqc.R
Modified: code/combine_cluster.R
Modified: code/combine_crt_sce.R
Modified: code/combine_filter_qcdb.R
Modified: code/combine_findmarker.R
Modified: code/combine_monocle.R
Modified: code/combine_pca.R
Modified: code/combine_sctransnorm.R
Modified: code/combine_vis.R
Modified: code/controlCell-fvbbl6.R
Modified: code/controlCell-pEstimate.R
Modified: code/correctLowConfCO.R
Modified: code/count_cb.nim
Modified: code/cumGeneticDistance.R
Modified: code/def_viterbi.R
Modified: code/detect_noisy_cells.R
Modified: code/dr_pca.R
Modified: code/expl_bined_Ave.R
Modified: code/fancm_reads.R
Modified: code/filterStateAndCO.R
Modified: code/findLowConfCO.R
Modified: code/find_segment_length.R
Modified: code/findmarker.R
Modified: code/getMarkerBasedCOs.R
Modified: code/markerStateAggr.R
Modified: code/nohup.out
Modified: code/norm.R
Modified: code/overlay_fun.R
Modified: code/plotBadMarkersBulk.R
Modified: code/plotCOregion.R
Modified: code/plotGeneticMap.R
Modified: code/plotHotRegion.R
Modified: code/plot_bp_bin-AF.R
Modified: code/plot_chr_co_bulkDNA.R
Modified: code/plot_corrected_state.R
Modified: code/plot_roh.py
Modified: code/rate_estimator.R
Modified: code/renamer.py
Modified: code/renamer_bam.nim
Modified: code/report_summary.Rmd
Modified: code/retag.py
Modified: code/retag_bam.nim
Modified: code/runVb-scCNV.R
Modified: code/run_viterbi.R
Modified: code/run_viterbi_F2F3.R
Modified: code/run_viterbi_bulkSample_chr.R
Modified: code/run_viterbi_cell_chr.R
Modified: code/scCNVcountCO.R
Modified: code/split_bam.nim
Modified: code/subsampleAGRF.R
Modified: code/vartrix.sh
Modified: code/viterbi_example_chr_cell.R
Modified: data/README.md
Modified: docs/.nojekyll
Modified: docs/2020-01-03_W11-small-cells.html
Modified: docs/Progress_report_yeln.html
Modified: docs/W11_W12_pooled_clustering.html
Modified: docs/W11_clustering.html
Modified: docs/W11_further_analysis.html
Modified: docs/W12_clustering.html
Modified: docs/W12_further_analysis.html
Modified: docs/about.html
Modified: docs/assets/F1_gametes.PNG
Modified: docs/assets/SplitNCigarReads.png
Modified: docs/assets/W11double.pdf
Modified: docs/assets/W12double.pdf
Modified: docs/assets/singleCell3pv2.PNG
Modified: docs/expl_W12_C28_GATK_AF_plot.html
Modified: docs/expl_W12_C28_cellsnp_AF_plot.html
Modified: docs/expl_W12_C2_cellsnp_AF_plot.html
Modified: docs/expl_W12_GATK_AF_plot.html
Modified: docs/expl_W12_bcftools_AF_plot.html
Modified: docs/expl_W12_bcftools_AF_plot_dp.html
Modified: docs/expl_W12_cellsnp_AF_plot.html
Modified: docs/expl_bcftools_dp_dedb_W12.html
Modified: docs/figure/Progress_report_yeln.Rmd/pressure-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-2.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-3.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/by_cluster-4.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/by_sample-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/by_sample-2.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/by_sample-3.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/c4_c28-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/cluster_composition-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/clustree-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/hm-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-10.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-11.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-12.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-13.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-14.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-15.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-16.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-2.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-3.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-4.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-5.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-6.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-7.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-8.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/known_markers-9.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-2.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-3.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-4.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-5.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster-6.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster_by_sample-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_cluster_by_sample-2.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_fltqc-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_fltqc-2.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_hvg-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_marker_plot-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_pc_select-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_pca_visulisation-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_raw_qc-1.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/pulled_raw_qc-2.png
Modified: docs/figure/W11_W12_pooled_clustering.Rmd/unnamed-chunk-4-1.png
Modified: docs/figure/W12_clustering.Rmd/W12_cluster-1.png
Modified: docs/figure/W12_clustering.Rmd/W12_cluster-2.png
Modified: docs/figure/W12_clustering.Rmd/W12_cluster-3.png
Modified: docs/figure/W12_clustering.Rmd/W12_cluster-4.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-1.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-10.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-11.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-12.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-13.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-14.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-15.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-2.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-3.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-4.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-5.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-6.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-7.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-8.png
Modified: docs/figure/W12_clustering.Rmd/W12_dedb_umaps-9.png
Modified: docs/figure/W12_clustering.Rmd/W12_fltqc-1.png
Modified: docs/figure/W12_clustering.Rmd/W12_fltqc-2.png
Modified: docs/figure/W12_clustering.Rmd/W12_hvg-1.png
Modified: docs/figure/W12_clustering.Rmd/W12_marker_plot-1.png
Modified: docs/figure/W12_clustering.Rmd/W12_pc_select-1.png
Modified: docs/figure/W12_clustering.Rmd/W12_pca_visulisation-1.png
Modified: docs/figure/W12_clustering.Rmd/W12_raw_qc-1.png
Modified: docs/figure/W12_clustering.Rmd/W12_raw_qc-2.png
Modified: docs/figure/W12_clustering.Rmd/ab_genes-1.png
Modified: docs/figure/W12_clustering.Rmd/ab_genes-2.png
Modified: docs/figure/W12_clustering.Rmd/boxplot_chrYgenes-1.png
Modified: docs/figure/W12_clustering.Rmd/plotExpr-1.png
Modified: docs/figure/W12_clustering.Rmd/plotExpr-2.png
Modified: docs/figure/W12_clustering.Rmd/plotExpr-3.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-1.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-10.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-11.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-12.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-13.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-14.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-15.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-2.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-3.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-4.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-5.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-6.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-7.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-8.png
Modified: docs/figure/W12_clustering.Rmd/spermatids_markers-9.png
Modified: docs/figure/W12_clustering.Rmd/unnamed-chunk-2-1.png
Modified: docs/figure/W12_clustering.Rmd/unnamed-chunk-3-1.png
Modified: docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/genotyped_AF-1.png
Modified: docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/genotyped_AF-2.png
Modified: docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/no_snps-1.png
Modified: docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/no_snps-2.png
Modified: docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/unnamed-chunk-2-1.png
Modified: docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/unnamed-chunk-3-1.png
Modified: docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/unnamed-chunk-3-2.png
Modified: docs/figure/expl_W12_C28_GATK_AF_plot.Rmd/whole_genome_af-1.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/colr_dp-1.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-1.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-2.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-3.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-4.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-5.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/no_snps-6.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/rm_all_hets-1.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/unnamed-chunk-2-1.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/unnamed-chunk-2-2.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/unnamed-chunk-4-1.png
Modified: docs/figure/expl_W12_C28_cellsnp_AF_plot.Rmd/whole_genome_af-1.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-1.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-2.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-3.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-4.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-5.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/no_snps-6.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/rm_all_hets-1.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/rm_all_hets_dp-1.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-2-1.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-3-1.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-3-2.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/unnamed-chunk-5-1.png
Modified: docs/figure/expl_W12_C2_cellsnp_AF_plot.Rmd/whole_genome_af-1.png
Modified: docs/figure/expl_W12_GATK_AF_plot.Rmd/genotyped_AF-1.png
Modified: docs/figure/expl_W12_GATK_AF_plot.Rmd/genotyped_AF-2.png
Modified: docs/figure/expl_W12_GATK_AF_plot.Rmd/no_snps-1.png
Modified: docs/figure/expl_W12_GATK_AF_plot.Rmd/no_snps-2.png
Modified: docs/figure/expl_W12_GATK_AF_plot.Rmd/unnamed-chunk-2-1.png
Modified: docs/figure/expl_W12_GATK_AF_plot.Rmd/unnamed-chunk-3-1.png
Modified: docs/figure/expl_W12_GATK_AF_plot.Rmd/unnamed-chunk-3-2.png
Modified: docs/figure/expl_W12_GATK_AF_plot.Rmd/whole_genome_af-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot.Rmd/all_bcf_cells-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot.Rmd/all_bcf_cells-2.png
Modified: docs/figure/expl_W12_bcftools_AF_plot.Rmd/colr_snp_dp-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot.Rmd/filter_qual-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot.Rmd/filter_qual-2.png
Modified: docs/figure/expl_W12_bcftools_AF_plot.Rmd/genotyped-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot.Rmd/genotyped-2.png
Modified: docs/figure/expl_W12_bcftools_AF_plot.Rmd/no_snps-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot.Rmd/whole_genome_af-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/colr_snp_dp-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/filter_qual-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/filter_qual-2.png
Modified: docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/genotyped-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/genotyped-2.png
Modified: docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/no_snps-1.png
Modified: docs/figure/expl_W12_bcftools_AF_plot_dp.Rmd/whole_genome_af-1.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/filterSNPs-1.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/filterSNPs-2.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-1.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-2.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-3.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-4.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-5.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/no_snps-6.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-1-1.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-2-1.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-4-1.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/unnamed-chunk-5-1.png
Modified: docs/figure/expl_W12_cellsnp_AF_plot.Rmd/whole_genome_af-1.png
Modified: docs/figure/expl_bcftools_dp_dedb_W12.Rmd/genotyped-1.png
Modified: docs/figure/expl_bcftools_dp_dedb_W12.Rmd/genotyped-2.png
Modified: docs/figure/expl_bcftools_dp_dedb_W12.Rmd/no_snps-1.png
Modified: docs/figure/expl_bcftools_dp_dedb_W12.Rmd/unnamed-chunk-1-1.png
Modified: docs/figure/expl_bcftools_dp_dedb_W12.Rmd/unnamed-chunk-2-1.png
Modified: docs/figure/expl_bcftools_dp_dedb_W12.Rmd/unnamed-chunk-2-2.png
Modified: docs/figure/expl_bcftools_dp_dedb_W12.Rmd/whole_genome_af-1.png
Modified: docs/index.html
Modified: docs/license.html
Modified: docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.css
Modified: docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.css.map
Modified: docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/bootstrap.css
Modified: docs/site_libs/bootstrap-3.3.5/css/bootstrap.css.map
Modified: docs/site_libs/bootstrap-3.3.5/css/bootstrap.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/cerulean.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/cosmo.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/darkly.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/flatly.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/Lato.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/LatoBold.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/LatoItalic.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/NewsCycle.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/NewsCycleBold.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSans.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansBold.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansBoldItalic.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansItalic.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansLight.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansLightItalic.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/Raleway.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/RalewayBold.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/Roboto.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoBold.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoLight.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoMedium.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansPro.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProBold.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProItalic.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProLight.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/fonts/Ubuntu.ttf
Modified: docs/site_libs/bootstrap-3.3.5/css/journal.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/lumen.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/paper.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/readable.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/sandstone.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/simplex.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/spacelab.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/united.min.css
Modified: docs/site_libs/bootstrap-3.3.5/css/yeti.min.css
Modified: docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.eot
Modified: docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.svg
Modified: docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.ttf
Modified: docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.woff
Modified: docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.woff2
Modified: docs/site_libs/bootstrap-3.3.5/js/bootstrap.js
Modified: docs/site_libs/bootstrap-3.3.5/js/bootstrap.min.js
Modified: docs/site_libs/bootstrap-3.3.5/js/npm.js
Modified: docs/site_libs/bootstrap-3.3.5/shim/html5shiv.min.js
Modified: docs/site_libs/bootstrap-3.3.5/shim/respond.min.js
Modified: docs/site_libs/font-awesome-5.1.0/css/all.css
Modified: docs/site_libs/font-awesome-5.1.0/css/v4-shims.css
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.eot
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.svg
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.ttf
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.woff
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.woff2
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.eot
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.svg
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.ttf
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.woff
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.woff2
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.eot
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.svg
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.ttf
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.woff
Modified: docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.woff2
Modified: docs/site_libs/jquery-1.11.3/jquery.min.js
Modified: docs/site_libs/jqueryui-1.11.4/README
Modified: docs/site_libs/jqueryui-1.11.4/images/ui-icons_444444_256x240.png
Modified: docs/site_libs/jqueryui-1.11.4/images/ui-icons_555555_256x240.png
Modified: docs/site_libs/jqueryui-1.11.4/images/ui-icons_777620_256x240.png
Modified: docs/site_libs/jqueryui-1.11.4/images/ui-icons_777777_256x240.png
Modified: docs/site_libs/jqueryui-1.11.4/images/ui-icons_cc0000_256x240.png
Modified: docs/site_libs/jqueryui-1.11.4/images/ui-icons_ffffff_256x240.png
Modified: docs/site_libs/jqueryui-1.11.4/index.html
Modified: docs/site_libs/jqueryui-1.11.4/jquery-ui.css
Modified: docs/site_libs/jqueryui-1.11.4/jquery-ui.js
Modified: docs/site_libs/jqueryui-1.11.4/jquery-ui.min.css
Modified: docs/site_libs/jqueryui-1.11.4/jquery-ui.min.js
Modified: docs/site_libs/jqueryui-1.11.4/jquery-ui.structure.css
Modified: docs/site_libs/jqueryui-1.11.4/jquery-ui.structure.min.css
Modified: docs/site_libs/jqueryui-1.11.4/jquery-ui.theme.css
Modified: docs/site_libs/jqueryui-1.11.4/jquery-ui.theme.min.css
Modified: docs/site_libs/navigation-1.1/codefolding.js
Modified: docs/site_libs/navigation-1.1/sourceembed.js
Modified: docs/site_libs/navigation-1.1/tabsets.js
Modified: docs/site_libs/tocify-1.9.1/jquery.tocify.css
Modified: docs/site_libs/tocify-1.9.1/jquery.tocify.js
Modified: org/README.md
Modified: output/README.md
Modified: references/README.md
Modified: resources/README.md
Modified: yeln.bib
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with wflow_publish()
to start tracking its development.
SNP density distribution indicate how many informative SNPs we have to map crossovers in either the scCNV or BC1F1 bulk sequencing samples. We are interested to find out whether our ability to find crossovers are impacted by the SNP densities or not.
SNP density distribution found by looking at the positions of SNPs from the reference VCF file references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.vcf.gz
<- read.table(file = "references/FVB_NJ.mgp.v5.snps.dbSNP142.homo.alt.chr.txt",
snp_density col.names = c("chr","Pos"))
<- snp_density[!snp_density$chr %in% c("chrX","chrY"),] snp_density
Using biomRt
for finding transcript starting sizes for mouse (ref genome mm10)
<- useEnsembl(biomart = 'genes',
ensembl95 dataset = 'mmusculus_gene_ensembl',
version = 95)
<- getBM( attributes = c("transcription_start_site", "chromosome_name",
tss_annot "transcript_start", "transcript_end",
"strand", "ensembl_gene_id",
"ensembl_transcript_id", "external_gene_name"),
mart = ensembl95)
<- tss_annot[tss_annot$chromosome_name %in% paste0(1:19),] tss_annot
mm10.gc5Base.wig.gz downloaded from https://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/
<- read.table(file = "data/mm10.1m.meanGC.bed")
mm10_meanGC $V4 <- as.numeric(mm10_meanGC$V4)
mm10_meanGC
#plotTracks(list(mm10_meanGC_track,crossover_count_track),chromosome = "chr1")
Construct GRanges for genomic features.
# tss_track <- DataTrack(range = GRanges(seqnames = tss_annot$chromosome_name,
# ranges = IRanges(start = tss_annot$transcription_start_site,
# width = 1)),
# genome = "mm10",
# data = data.frame(count = rep(1, length(tss_annot$chromosome_name))),
# type="hist",
# window = 80,
# aggregation = sum,
# name = "TSS\ndensity",
# background.panel = "#f3f4d3",
# background.title = "#d3e3b6",
# cex.title = 1.4,
# cex.axis = 1.0)
<- GRanges(seqnames = tss_annot$chromosome_name,
tss_gr ranges = IRanges(start = tss_annot$transcription_start_site,
width = 1),
tss_count = 1)
<- GRanges(seqnames = snp_density$chr,
snp_density_gr ranges = IRanges(start = snp_density$Pos,
width = 1),
snp_count = 1)
<- GRanges(seqnames = mm10_meanGC$V1,
mm10_meanGC_gr ranges = IRanges(start = mm10_meanGC$V2,
end = mm10_meanGC$V3),
gc_perc = as.numeric( mm10_meanGC$V4))
# mm10_meanGC_track <- DataTrack(range = GRanges(seqnames = mm10_meanGC$V1,
# ranges = IRanges(start = mm10_meanGC$V2,
# end = mm10_meanGC$V3)),
# genome = "mm10",
# data = mm10_meanGC$V4,
# type=c("p","l"),
# window = 80,
# aggregation = mean,
# name = "GC\nPercent",
# background.panel = "#FFFEDB",
# background.title = "lightblue",
# cex.title = 1.4,
# cex.axis = 1.0)
# snp_density_track_log <- DataTrack(range = GRanges(seqnames = snp_density$chr,
# ranges = IRanges(start = snp_density$Pos,
# width = 1)),
# genome = "mm10",
# data = data.frame(count = rep(1, length(snp_density$chr))),
# type=c("p","l"),
# window = 98,
# aggregation = function(x) { log10(sum(x)+1)},
# name = "SNP\ndensity\nlog10",
# background.panel = "#FFFEDB",
# background.title = "lightblue",
# cex.title = 1.4,
# cex.axis = 1.0)
#plotTracks(snp_density_track_log,chromosome = "chr1", main = "SNP denstiy chr1")
<-
scCNV readRDS(file = "~/Projects/rejy_2020_single-sperm-co-calling/output/outputR/analysisRDS/allSamples.setting4.rds")
<- c("mutant","mutant","wildtype","mutant",
x "wildtype","wildtype")
<- c("Fancm-/-","Fancm-/-","Fancm+/+","Fancm-/-",
xx "Fancm+/+","Fancm+/+")
<- scCNV
crossover_counts $sampleType <- plyr::mapvalues(crossover_counts$sampleGroup,from = c("WC_522",
crossover_counts"WC_526",
"WC_CNV_42",
"WC_CNV_43",
"WC_CNV_44",
"WC_CNV_53"),
to =x)
<- GenomeAxisTrack(cex.axis = 1.0)
gtrack
<- GRanges(seqnames = seqnames(crossover_counts),
sc_crossover_gr ranges = ranges(crossover_counts))
<- as.matrix(assay(crossover_counts))
per_cell_cos <- sapply(unique(crossover_counts$sampleType), function(sampleType){
per_sample_type_cos rowMeans(per_cell_cos[,which(colData(crossover_counts)$sampleType == sampleType)])
})
mcols(sc_crossover_gr) <- per_sample_type_cos
# crossover_count_track <- DataTrack(range = rowRanges(crossover_counts),
# genome = "mm10",
# data = data.frame(assay(crossover_counts)),
# name = "mean crossover counts\nacross windows",
# type = "heatmap",
# groups = crossover_counts$sampleType,
# col = c("cornflowerblue","tan1"),
# aggregateGroups = TRUE,
# aggregation = mean,
# background.title = "pink",
# window = 80,
# cex.title = 1.4,
# cex.axis = 1.0)
Distribute genomic feature counts into equal sized bins
<- function(new_gr,bin_size,
cal_bin_dist ref_genome="mm10"){
## bin_size supplied then.
## fetch the chromoInfo from GenomeInfoDb.
## This is only for getting the basepair lengths of the genome
<- GenomeInfoDb::getChromInfoFromUCSC(ref_genome)
chrom_info ## only for chr1-M
<- chrom_info[grep("_",chrom_info$chrom,invert = TRUE),]
chrom_info
## Check what seqnames is in new_gr and make it consistent
if(!grepl("chr",as.character(seqnames(new_gr)[1]))){
$chrom <- gsub("chr","",chrom_info$chrom)
chrom_info
}<- chrom_info[chrom_info$chrom %in%
chrom_info ::seqlevels(new_gr),]
GenomeInfoDb## create Granges object for chromosomes
<- chrom_info$size
seq_length names(seq_length) <- chrom_info$chrom
<- GenomicRanges::GRanges(
dna_mm10_gr seqnames = Rle(names(seq_length)),
ranges = IRanges(1, end = seq_length, names = names(seq_length)),
seqlengths = seq_length)
::genome(dna_mm10_gr) <- ref_genome
GenomeInfoDb#dna_mm10_gr
## per bp distances
::mcols(new_gr) <- apply(GenomicRanges::mcols(new_gr),2,
GenomicRangesfunction(x) {
/GenomicRanges::width(new_gr)})
x<- bin_size
tilewidth <- GenomicRanges::tileGenome(seqinfo(dna_mm10_gr),
tiles tilewidth = tilewidth)
<- unlist(tiles)
binned_dna_mm10_gr
<- GenomicRanges::sort(GenomeInfoDb::sortSeqlevels(new_gr))
new_gr if(!is.null(new_gr$gc_perc)){
<- subset(new_gr,!is.nan(new_gr$gc_perc))
new_gr
}
<- lapply(colnames(mcols(new_gr)), function(group_col){
bin_dist
<- GenomicRanges::coverage(new_gr,
dist_rle weight = mcols(new_gr)[,group_col],
)<- binnedAverage(binned_dna_mm10_gr,dist_rle,
dist_bined "dist_bin_ave")
return(dist_bined$dist_bin_ave*width(dist_bined))
})
mcols(binned_dna_mm10_gr) <- do.call(cbind,bin_dist)
colnames(mcols(binned_dna_mm10_gr)) <- colnames(mcols(new_gr))
binned_dna_mm10_gr }
Generate DataTracks from bin_gr
<- 1e6
bin_size
<- cal_bin_dist(sc_crossover_gr,bin_size = bin_size)
bin_gr <- cal_bin_dist(mm10_meanGC_gr,bin_size = bin_size)
meanGC_bin_gr <- cal_bin_dist(tss_gr,bin_size = bin_size)
tss_bin_gr <- cal_bin_dist(snp_density_gr,bin_size = bin_size)
snp_bin_gr
<- function(){
geneGFTracks
<- DataTrack(range = bin_gr,
co_track genome = "mm10",
data = data.frame(mcols(bin_gr)),
name = "scCNV",
type = "heatmap",
groups = c("mutant","wildtype"),
col = c("cornflowerblue","tan1"),
aggregateGroups = TRUE,
aggregation = mean,
background.title = "pink",
# window = -1,
cex.title = 1.4,
cex.axis = 1.0)
<- DataTrack(range = meanGC_bin_gr,
gc_track genome = "mm10",
data = data.frame(mcols(meanGC_bin_gr)),
name = "GC percent",
type = c("p","l"),
aggregation = mean,
background.panel = "#FFFEDB",
background.title = "lightblue",
# window = -1,
cex.title = 1.4,
cex.axis = 1.0)
<- DataTrack(range =snp_bin_gr,
snp_density_track_log genome = "mm10",
data = data.frame(log10(mcols(snp_bin_gr)[,1]+1)),
type=c("p","l"),
# window = 98,
# aggregation = function(x) { log10(sum(x)+1)},
name = "SNP\ndensity\nlog10",
background.panel = "#FFFEDB",
background.title = "lightblue",
cex.title = 1.4,
cex.axis = 1.0)
<- DataTrack(range =tss_bin_gr,
tss_track genome = "mm10",
data = data.frame(mcols(tss_bin_gr)),
type="hist",
# window = 80,
aggregation = sum,
name = "TSS\ndensity",
background.panel = "#f3f4d3",
background.title = "#d3e3b6",
cex.title = 1.4,
cex.axis = 1.0)
list(gtrack,tss_track,gc_track,snp_density_track_log,
co_track) }
<- geneGFTracks() scCNV_alltracks
#c(1,8,9,11)
<- paste0("chr",1:19)
chroms <- 2
ncols <- 3
nrows
for(i in seq_along(chroms)){
if(i%%(ncols * nrows)==1) {
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrows,ncols)))
} <- i%%(ncols * nrows)
k <- ifelse(k==0,ncols * nrows,k)
k pushViewport(viewport(layout.pos.col = ((k - 1) %% ncols) + 1,
layout.pos.row = (((k) - 1) %/% ncols) + 1))
plotTracks(scCNV_alltracks,
chromosome = chroms[i],
add = TRUE,
main = chroms[i], sizes=c(1,2,2,2,2))
popViewport(1)
}
<- GRanges(seqnames = seqnames(crossover_counts),
crossover_gr ranges = ranges(crossover_counts))
<- as.matrix(assay(crossover_counts))
per_cell_cos <- sapply(unique(crossover_counts$sampleType), function(sampleType){
per_sample_type_cos rowMeans(per_cell_cos[,which(colData(crossover_counts)$sampleType == sampleType)])
})mcols(crossover_gr) <- per_sample_type_cos
<- list()
plts_list
<- 1
i for(bin_size in c(1e3,1e4,1e5,1e6,1.5e6,1e7)){
<- cal_bin_dist(crossover_gr,bin_size = bin_size)
crossover_bin_gr <- GRanges(seqnames = snp_density$chr,
snp_gr ranges = IRanges(start = snp_density$Pos,
width = 1),
count = 1)
<- cal_bin_dist(snp_gr,bin_size = bin_size)
snp_bin_gr <- crossover_bin_gr
snp_den_crossover_corr mcols(snp_den_crossover_corr) <- cbind(mcols(snp_bin_gr),mcols(crossover_bin_gr))
<- data.frame(snp_den_crossover_corr)
snp_den_crossover_corr_df
$diff <- (snp_den_crossover_corr_df$mutant - snp_den_crossover_corr_df$wildtype)
snp_den_crossover_corr_df
<- snp_den_crossover_corr_df %>% dplyr::mutate(bin_type = case_when(
plot_df ==0 ~ "Zero SNPs",
count < 10 ~ "1-10 SNPs",
count <=50 ~ "11-50 SNPs",
count <=100 ~ "51-100 SNPs",
count TRUE ~ "High SNPs"
))
try( p <- plot_df %>% dplyr::filter(count>0) %>%
ggplot()+geom_point(mapping = aes(x = count, y = diff,color = bin_type))+
theme_bw(base_size = 18)+
geom_hline(mapping = aes(yintercept=0))+
scale_x_log10(),TRUE)
try(plts_list[[i]] <- p+facet_wrap(.~seqnames),TRUE)
= i+1
i }
plts_list
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
<- DataTrack(range = rowRanges(crossover_counts),
crossover_count_track_perSample genome = "mm10",
data = data.frame(assay(crossover_counts)),
name ="expected crossover counts across chromsome windows",
type = "heatmap",
aggregateGroups=TRUE,
groups = crossover_counts$sampleGroup)
<- paste0("chr",1:19)
chroms <- 2
ncols <- 2
nrows
for(i in seq_along(chroms)){
if(i%%(ncols * nrows)==1) {
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrows,ncols)))
} <- i%%(ncols * nrows)
k <- ifelse(k==0,ncols * nrows,k)
k pushViewport(viewport(layout.pos.col = ((k - 1) %% ncols) + 1,
layout.pos.row = (((k) - 1) %/% ncols) + 1))
plotTracks(list(gtrack,crossover_count_track_perSample),
chromosome = chroms[i],add = TRUE,
main = chroms[i])
popViewport(1)
}
<- readRDS(file = "output/outputR/analysisRDS/all_rse_count_07-20.rds") bc1f1_samples
#table(bc1f1_samples$sampleGroup)
<- bc1f1_samples[,bc1f1_samples$sampleGroup %in% c( "Male_HET","Male_KO","Male_WT")]
bc1f1_samples_male <- bc1f1_samples[,bc1f1_samples$sampleGroup %in% c( "Female_HET","Female_KO","Female_WT")] bc1f1_samples_female
<- GRanges(seqnames = seqnames(bc1f1_samples_male),
male_crossover_gr ranges = ranges(bc1f1_samples_male))
<- as.matrix(assay(bc1f1_samples_male))
per_cell_cos <- sapply(unique(bc1f1_samples_male$sampleGroup), function(sampleGroup){
per_sample_type_cos rowMeans(per_cell_cos[,which(colData(bc1f1_samples_male)$sampleGroup == sampleGroup)])
})
mcols(male_crossover_gr) <- per_sample_type_cos
<- 1e6
bin_size
<- cal_bin_dist(male_crossover_gr,bin_size = bin_size)
male_bin_gr
<- DataTrack(range = male_bin_gr,
male_co_track genome = "mm10",
data = data.frame(mcols(male_bin_gr)),
name = "BC1F1 male",
type = "heatmap",
groups = colnames(mcols(male_bin_gr)),
col = c("Male_HET"="grey","Male_KO"="cornflowerblue",
"Male_WT"="tan1"),
aggregateGroups = TRUE,
aggregation = mean,
background.title = "pink",
# window = -1,
cex.title = 1.4,
cex.axis = 1.0)
<- scCNV_alltracks
male_alltracks 5]] <- male_co_track male_alltracks[[
#c(1,8,9,11)
<- paste0("chr",1:19)
chroms <- 2
ncols <- 3
nrows
for(i in seq_along(chroms)){
if(i%%(ncols * nrows)==1) {
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrows,ncols)))
} <- i%%(ncols * nrows)
k <- ifelse(k==0,ncols * nrows,k)
k pushViewport(viewport(layout.pos.col = ((k - 1) %% ncols) + 1,
layout.pos.row = (((k) - 1) %/% ncols) + 1))
plotTracks(male_alltracks,
chromosome = chroms[i],
add = TRUE,
main = chroms[i], sizes=c(1,2,2,2,2))
popViewport(1)
}
<- GRanges(seqnames = seqnames(bc1f1_samples_female),
female_crossover_gr ranges = ranges(bc1f1_samples_female))
<- as.matrix(assay(bc1f1_samples_female))
per_cell_cos <- sapply(unique(bc1f1_samples_female$sampleGroup), function(sampleGroup){
per_sample_type_cos rowMeans(per_cell_cos[,which(colData(bc1f1_samples_female)$sampleGroup == sampleGroup)])
})
mcols(female_crossover_gr) <- per_sample_type_cos
<- 1e6
bin_size
<- cal_bin_dist(female_crossover_gr,bin_size = bin_size)
female_bin_gr
<- DataTrack(range = female_bin_gr,
female_co_track genome = "mm10",
data = data.frame(mcols(female_bin_gr)),
name = "BC1F1 female",
type = "heatmap",
groups = colnames(mcols(female_bin_gr)),
col = c("Female_HET"="grey","Female_KO"="cornflowerblue",
"Female_WT"="tan1"),
aggregateGroups = TRUE,
aggregation = mean,
background.title = "pink",
# window = -1,
cex.title = 1.4,
cex.axis = 1.0)
<- scCNV_alltracks
female_alltracks 5]] <- female_co_track female_alltracks[[
#c(1,8,9,11)
<- paste0("chr",1:19)
chroms <- 2
ncols <- 3
nrows
for(i in seq_along(chroms)){
if(i%%(ncols * nrows)==1) {
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrows,ncols)))
} <- i%%(ncols * nrows)
k <- ifelse(k==0,ncols * nrows,k)
k pushViewport(viewport(layout.pos.col = ((k - 1) %% ncols) + 1,
layout.pos.row = (((k) - 1) %/% ncols) + 1))
plotTracks(female_alltracks,
chromosome = chroms[i],
add = TRUE,
main = chroms[i], sizes=c(1,2,2,2,2))
popViewport(1)
}
sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Rocky Linux 8.4 (Green Obsidian)
Matrix products: default
BLAS/LAPACK: /usr/lib64/libopenblasp-r0.3.12.so
locale:
[1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
[5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
[7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid parallel stats4 stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] biomaRt_2.48.3 doParallel_1.0.16
[3] iterators_1.0.13 foreach_1.5.1
[5] Gviz_1.36.2 gridExtra_2.3
[7] SummarizedExperiment_1.22.0 Biobase_2.52.0
[9] GenomicRanges_1.44.0 GenomeInfoDb_1.28.4
[11] IRanges_2.26.0 S4Vectors_0.30.1
[13] BiocGenerics_0.38.0 MatrixGenerics_1.4.3
[15] matrixStats_0.61.0 dplyr_1.0.7
[17] comapr_0.99.27 ggrepel_0.9.1
[19] ggplot2_3.3.5 readxl_1.3.1
loaded via a namespace (and not attached):
[1] backports_1.2.1 circlize_0.4.13 Hmisc_4.5-0
[4] workflowr_1.6.2 BiocFileCache_2.0.0 plyr_1.8.6
[7] lazyeval_0.2.2 splines_4.1.0 BiocParallel_1.26.2
[10] digest_0.6.28 ensembldb_2.16.4 htmltools_0.5.2
[13] fansi_0.5.0 magrittr_2.0.1 checkmate_2.0.0
[16] memoise_2.0.0 BSgenome_1.60.0 cluster_2.1.2
[19] Biostrings_2.60.2 prettyunits_1.1.1 jpeg_0.1-9
[22] colorspace_2.0-2 blob_1.2.2 rappdirs_0.3.3
[25] xfun_0.26 crayon_1.4.1 RCurl_1.98-1.5
[28] jsonlite_1.7.2 survival_3.2-11 VariantAnnotation_1.38.0
[31] glue_1.4.2 gtable_0.3.0 zlibbioc_1.38.0
[34] XVector_0.32.0 DelayedArray_0.18.0 shape_1.4.6
[37] scales_1.1.1 DBI_1.1.1 Rcpp_1.0.7
[40] viridisLite_0.4.0 progress_1.2.2 htmlTable_2.2.1
[43] foreign_0.8-81 bit_4.0.4 Formula_1.2-4
[46] htmlwidgets_1.5.4 httr_1.4.2 RColorBrewer_1.1-2
[49] ellipsis_0.3.2 farver_2.1.0 pkgconfig_2.0.3
[52] XML_3.99-0.8 nnet_7.3-16 dbplyr_2.1.1
[55] utf8_1.2.2 labeling_0.4.2 tidyselect_1.1.1
[58] rlang_0.4.11 reshape2_1.4.4 later_1.3.0
[61] AnnotationDbi_1.54.1 munsell_0.5.0 cellranger_1.1.0
[64] tools_4.1.0 cachem_1.0.6 generics_0.1.0
[67] RSQLite_2.2.8 evaluate_0.14 stringr_1.4.0
[70] fastmap_1.1.0 yaml_2.2.1 knitr_1.36
[73] bit64_4.0.5 fs_1.5.0 purrr_0.3.4
[76] KEGGREST_1.32.0 AnnotationFilter_1.16.0 xml2_1.3.2
[79] compiler_4.1.0 rstudioapi_0.13 plotly_4.9.4.1
[82] filelock_1.0.2 curl_4.3.2 png_0.1-7
[85] tibble_3.1.4 stringi_1.7.4 highr_0.9
[88] GenomicFeatures_1.44.2 lattice_0.20-44 ProtGenerics_1.24.0
[91] Matrix_1.3-3 vctrs_0.3.8 pillar_1.6.3
[94] lifecycle_1.0.1 jquerylib_0.1.4 GlobalOptions_0.1.2
[97] data.table_1.14.2 bitops_1.0-7 httpuv_1.6.3
[100] rtracklayer_1.52.1 R6_2.5.1 BiocIO_1.2.0
[103] latticeExtra_0.6-29 promises_1.2.0.1 codetools_0.2-18
[106] dichromat_2.0-0 assertthat_0.2.1 rprojroot_2.0.2
[109] rjson_0.2.20 withr_2.4.2 GenomicAlignments_1.28.0
[112] Rsamtools_2.8.0 GenomeInfoDbData_1.2.6 hms_1.1.1
[115] rpart_4.1-15 tidyr_1.1.4 rmarkdown_2.11
[118] git2r_0.28.0 biovizBase_1.40.0 base64enc_0.1-3
[121] restfulr_0.0.13
::session_info() devtools
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.1.0 (2021-05-18)
os Rocky Linux 8.4 (Green Obsidian)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Melbourne
date 2021-10-13
─ Packages ───────────────────────────────────────────────────────────────────
package * version date lib source
AnnotationDbi 1.54.1 2021-06-08 [1] Bioconductor
AnnotationFilter 1.16.0 2021-05-19 [1] Bioconductor
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.1.0)
backports 1.2.1 2020-12-09 [1] CRAN (R 4.1.0)
base64enc 0.1-3 2015-07-28 [1] CRAN (R 4.1.0)
Biobase * 2.52.0 2021-05-19 [1] Bioconductor
BiocFileCache 2.0.0 2021-05-19 [1] Bioconductor
BiocGenerics * 0.38.0 2021-05-19 [1] Bioconductor
BiocIO 1.2.0 2021-05-19 [1] Bioconductor
BiocParallel 1.26.2 2021-08-22 [1] Bioconductor
biomaRt * 2.48.3 2021-08-15 [1] Bioconductor
Biostrings 2.60.2 2021-08-05 [1] Bioconductor
biovizBase 1.40.0 2021-05-19 [1] Bioconductor
bit 4.0.4 2020-08-04 [1] CRAN (R 4.1.0)
bit64 4.0.5 2020-08-30 [1] CRAN (R 4.1.0)
bitops 1.0-7 2021-04-24 [1] CRAN (R 4.1.0)
blob 1.2.2 2021-07-23 [1] CRAN (R 4.1.0)
BSgenome 1.60.0 2021-05-19 [1] Bioconductor
cachem 1.0.6 2021-08-19 [1] CRAN (R 4.1.0)
callr 3.7.0 2021-04-20 [1] CRAN (R 4.1.0)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.1.0)
checkmate 2.0.0 2020-02-06 [1] CRAN (R 4.1.0)
circlize 0.4.13 2021-06-09 [1] CRAN (R 4.1.0)
cli 3.0.1 2021-07-17 [1] CRAN (R 4.1.0)
cluster 2.1.2 2021-04-17 [2] CRAN (R 4.1.0)
codetools 0.2-18 2020-11-04 [2] CRAN (R 4.1.0)
colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.0)
comapr * 0.99.27 2021-09-30 [1] Github (ruqianl/comapr@870dfef)
crayon 1.4.1 2021-02-08 [1] CRAN (R 4.1.0)
curl 4.3.2 2021-06-23 [1] CRAN (R 4.1.0)
data.table 1.14.2 2021-09-27 [1] CRAN (R 4.1.0)
DBI 1.1.1 2021-01-15 [1] CRAN (R 4.1.0)
dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.1.0)
DelayedArray 0.18.0 2021-05-19 [1] Bioconductor
desc 1.4.0 2021-09-28 [1] CRAN (R 4.1.0)
devtools 2.4.2 2021-06-07 [1] CRAN (R 4.1.0)
dichromat 2.0-0 2013-01-24 [1] CRAN (R 4.1.0)
digest 0.6.28 2021-09-23 [1] CRAN (R 4.1.0)
doParallel * 1.0.16 2020-10-16 [1] CRAN (R 4.1.0)
dplyr * 1.0.7 2021-06-18 [1] CRAN (R 4.1.0)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.1.0)
ensembldb 2.16.4 2021-08-05 [1] Bioconductor
evaluate 0.14 2019-05-28 [1] CRAN (R 4.1.0)
fansi 0.5.0 2021-05-25 [1] CRAN (R 4.1.0)
farver 2.1.0 2021-02-28 [1] CRAN (R 4.1.0)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.0)
filelock 1.0.2 2018-10-05 [1] CRAN (R 4.1.0)
foreach * 1.5.1 2020-10-15 [1] CRAN (R 4.1.0)
foreign 0.8-81 2020-12-22 [2] CRAN (R 4.1.0)
Formula 1.2-4 2020-10-16 [1] CRAN (R 4.1.0)
fs 1.5.0 2020-07-31 [1] CRAN (R 4.1.0)
generics 0.1.0 2020-10-31 [1] CRAN (R 4.1.0)
GenomeInfoDb * 1.28.4 2021-09-05 [1] Bioconductor
GenomeInfoDbData 1.2.6 2021-09-30 [1] Bioconductor
GenomicAlignments 1.28.0 2021-05-19 [1] Bioconductor
GenomicFeatures 1.44.2 2021-08-26 [1] Bioconductor
GenomicRanges * 1.44.0 2021-05-19 [1] Bioconductor
ggplot2 * 3.3.5 2021-06-25 [1] CRAN (R 4.1.0)
ggrepel * 0.9.1 2021-01-15 [1] CRAN (R 4.1.0)
git2r 0.28.0 2021-01-10 [1] CRAN (R 4.1.0)
GlobalOptions 0.1.2 2020-06-10 [1] CRAN (R 4.1.0)
glue 1.4.2 2020-08-27 [1] CRAN (R 4.1.0)
gridExtra * 2.3 2017-09-09 [1] CRAN (R 4.1.0)
gtable 0.3.0 2019-03-25 [1] CRAN (R 4.1.0)
Gviz * 1.36.2 2021-07-04 [1] Bioconductor
highr 0.9 2021-04-16 [1] CRAN (R 4.1.0)
Hmisc 4.5-0 2021-02-28 [1] CRAN (R 4.1.0)
hms 1.1.1 2021-09-26 [1] CRAN (R 4.1.0)
htmlTable 2.2.1 2021-05-18 [1] CRAN (R 4.1.0)
htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.0)
htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.1.0)
httpuv 1.6.3 2021-09-09 [1] CRAN (R 4.1.0)
httr 1.4.2 2020-07-20 [1] CRAN (R 4.1.0)
IRanges * 2.26.0 2021-05-19 [1] Bioconductor
iterators * 1.0.13 2020-10-15 [1] CRAN (R 4.1.0)
jpeg 0.1-9 2021-07-24 [1] CRAN (R 4.1.0)
jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.1.0)
jsonlite 1.7.2 2020-12-09 [1] CRAN (R 4.1.0)
KEGGREST 1.32.0 2021-05-19 [1] Bioconductor
knitr 1.36 2021-09-29 [1] CRAN (R 4.1.0)
labeling 0.4.2 2020-10-20 [1] CRAN (R 4.1.0)
later 1.3.0 2021-08-18 [1] CRAN (R 4.1.0)
lattice 0.20-44 2021-05-02 [2] CRAN (R 4.1.0)
latticeExtra 0.6-29 2019-12-19 [1] CRAN (R 4.1.0)
lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.1.0)
lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.0)
magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.1.0)
Matrix 1.3-3 2021-05-04 [2] CRAN (R 4.1.0)
MatrixGenerics * 1.4.3 2021-08-26 [1] Bioconductor
matrixStats * 0.61.0 2021-09-17 [1] CRAN (R 4.1.0)
memoise 2.0.0 2021-01-26 [1] CRAN (R 4.1.0)
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.0)
nnet 7.3-16 2021-05-03 [2] CRAN (R 4.1.0)
pillar 1.6.3 2021-09-26 [1] CRAN (R 4.1.0)
pkgbuild 1.2.0 2020-12-15 [1] CRAN (R 4.1.0)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.0)
pkgload 1.2.2 2021-09-11 [1] CRAN (R 4.1.0)
plotly 4.9.4.1 2021-06-18 [1] CRAN (R 4.1.0)
plyr 1.8.6 2020-03-03 [1] CRAN (R 4.1.0)
png 0.1-7 2013-12-03 [1] CRAN (R 4.1.0)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.1.0)
processx 3.5.2 2021-04-30 [1] CRAN (R 4.1.0)
progress 1.2.2 2019-05-16 [1] CRAN (R 4.1.0)
promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.1.0)
ProtGenerics 1.24.0 2021-05-19 [1] Bioconductor
ps 1.6.0 2021-02-28 [1] CRAN (R 4.1.0)
purrr 0.3.4 2020-04-17 [1] CRAN (R 4.1.0)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.0)
rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.1.0)
RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 4.1.0)
Rcpp 1.0.7 2021-07-07 [1] CRAN (R 4.1.0)
RCurl 1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)
readxl * 1.3.1 2019-03-13 [1] CRAN (R 4.1.0)
remotes 2.4.1 2021-09-29 [1] CRAN (R 4.1.0)
reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.1.0)
restfulr 0.0.13 2017-08-06 [1] CRAN (R 4.1.0)
rjson 0.2.20 2018-06-08 [1] CRAN (R 4.1.0)
rlang 0.4.11 2021-04-30 [1] CRAN (R 4.1.0)
rmarkdown 2.11 2021-09-14 [1] CRAN (R 4.1.0)
rpart 4.1-15 2019-04-12 [2] CRAN (R 4.1.0)
rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.1.0)
Rsamtools 2.8.0 2021-05-19 [1] Bioconductor
RSQLite 2.2.8 2021-08-21 [1] CRAN (R 4.1.0)
rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.1.0)
rtracklayer 1.52.1 2021-08-15 [1] Bioconductor
S4Vectors * 0.30.1 2021-09-26 [1] Bioconductor
scales 1.1.1 2020-05-11 [1] CRAN (R 4.1.0)
sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.1.0)
shape 1.4.6 2021-05-19 [1] CRAN (R 4.1.0)
stringi 1.7.4 2021-08-25 [1] CRAN (R 4.1.0)
stringr 1.4.0 2019-02-10 [1] CRAN (R 4.1.0)
SummarizedExperiment * 1.22.0 2021-05-19 [1] Bioconductor
survival 3.2-11 2021-04-26 [2] CRAN (R 4.1.0)
testthat 3.0.4 2021-07-01 [1] CRAN (R 4.1.0)
tibble 3.1.4 2021-08-25 [1] CRAN (R 4.1.0)
tidyr 1.1.4 2021-09-27 [1] CRAN (R 4.1.0)
tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.1.0)
usethis 2.0.1 2021-02-10 [1] CRAN (R 4.1.0)
utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.0)
VariantAnnotation 1.38.0 2021-05-19 [1] Bioconductor
vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.1.0)
viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.1.0)
withr 2.4.2 2021-04-18 [1] CRAN (R 4.1.0)
workflowr 1.6.2 2020-04-30 [1] CRAN (R 4.1.0)
xfun 0.26 2021-09-14 [1] CRAN (R 4.1.0)
XML 3.99-0.8 2021-09-17 [1] CRAN (R 4.1.0)
xml2 1.3.2 2020-04-23 [1] CRAN (R 4.1.0)
XVector 0.32.0 2021-05-19 [1] Bioconductor
yaml 2.2.1 2020-02-01 [1] CRAN (R 4.1.0)
zlibbioc 1.38.0 2021-05-19 [1] Bioconductor
[1] /mnt/beegfs/mccarthy/scratch/general/rlyu/Software/R/Rlib/4.1.0/yeln
[2] /opt/R/4.1.0/lib/R/library