Last updated: 2022-03-14
Checks: 5 1
Knit directory: yeln_2019_spermtyping/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190102)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init
in your project directory.
This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start
.
<- function(plot_p, saveToFile, dpi=300, fig.width = 14,
savePNG fig.height =10,
bothPngPDF= FALSE){
png(saveToFile, width = fig.width,
height = fig.height, units = "in",
pointsize = 12, res = dpi)
print(plot_p)
dev.off()
}
<- readRDS(file = "~/Projects/rejy_2020_single-sperm-co-calling/output/outputR/analysisRDS/countsAll-settings4.3-scCNV-CO-counts_07-mar-2022.rds") scCNV
scCNV by Fancm genotype
<- c("mutant","mutant","wildtype","mutant",
x "wildtype","wildtype")
<- c("Fancm-/-","Fancm-/-","Fancm+/+","Fancm-/-",
xx "Fancm+/+","Fancm+/+")
$sampleType <- plyr::mapvalues(scCNV$sampleGroup,from = c("WC_522",
scCNV"WC_526",
"WC_CNV_42",
"WC_CNV_43",
"WC_CNV_44",
"WC_CNV_53"),
to =xx)
<- calGeneticDist(scCNV,group_by = "sampleType")
scCNV_dist_type
colSums(as.matrix(rowData(scCNV_dist_type)$kosambi))
Fancm-/- Fancm+/+
1387.336 1227.412
Bulk bc1f1
<- readRDS(file = "output/outputR/analysisRDS/all_rse_count_07-20.rds") bc1f1_samples
<- calGeneticDist(bc1f1_samples,group_by = "sampleGroup" )
bc1f1_samples_dist <- calGeneticDist(bc1f1_samples[,bc1f1_samples$sampleGroup %in%
bc1f1_samples_dist_male c("Male_HET","Male_WT","Male_KO")],
group_by = "sampleGroup" )
<- calGeneticDist(bc1f1_samples[,bc1f1_samples$sampleGroup %in%
bc1f1_samples_dist_female c("Female_HET","Female_WT","Female_KO")],group_by = "sampleGroup")
<- calGeneticDist(scCNV,group_by = "sampleType",bin_size = 1e7)
scCNV_dist_bin_dist
<- calGeneticDist(bc1f1_samples[,bc1f1_samples$sampleGroup %in%
bc1f1_samples_dist_male_bin_dist c("Male_HET","Male_WT","Male_KO")],
bin_size = 1e7,
group_by = "sampleGroup")
<- calGeneticDist(bc1f1_samples,
bc1f1_samples_dist_bin_dist bin_size = 1e7,
group_by = "sampleGroup")
<- scCNV_dist_bin_dist
combined_bin_dist mcols(combined_bin_dist ) <- cbind(mcols(scCNV_dist_bin_dist),
apply(mcols(bc1f1_samples_dist_male_bin_dist),
2,function(x) (-1)*x))
plotGeneticDist(combined_bin_dist,cumulative = F,chr = "chr8")+
scale_color_manual("sampleType",
labels = c("mutant"= "single sperm KO", "wildtype"="single sperm WT",
"Male_KO" = "male KO" , "Male_WT" = "male WT" ),
values = c("mutant" = "#2b2d42",
"wildtype" = "#d90429",
"Male_KO" = "#8d99ae",
"Male_WT" = "#e75466",
"Male_HET" = "#76797a"))
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.
# values = c("mutant" = "#2b2d42",
# "wildtype" = "#d90429",
# "Male_KO" = "#8d99ae",
# "Male_WT" = "#e75466",
# "Male_HET" = "#76797a")
<- list()
chr_cums for(chr in paste0("chr",c(1:19)) ){
suppressMessages(
<-
chr_cums[[chr]] plotGeneticDist(combined_bin_dist,cumulative = F,chr =chr)+
scale_color_manual("sampleType",
labels = c("Fancm-/-"= "single sperm KO",
"Fancm+/+"="single sperm WT",
"Male_KO" = "male KO" ,
"Male_WT" = "male WT" ),
values = c("Fancm-/-" = "cornflowerblue",
"Fancm+/+" = "tan1",
"Male_KO" = "cornflowerblue",
"Male_WT" = "tan1",
"Male_HET" = "grey50"))+geom_hline(yintercept = 0,
linetype = "dashed",alpha=0.4)+
scale_y_continuous(breaks = c(-15,-10,-5,0,5,10,15,20),
labels = c("15","10","5","0","5","10","15","20"))+
scale_x_continuous(labels = scales::unit_format(unit = "M",
scale = 1e-06),limits = c(0,196e6),
breaks= c(0,50e6,100e6,150e6,195e6))+
guides(color="none")+xlab("")+ylab("")+
theme(panel.grid.minor = element_line(colour = "grey", size = 0.2),
panel.grid.major = element_blank(),
plot.margin = margin(t=10,r=15),
strip.text.x = element_text(size =22)))
}
<- marrangeGrob(chr_cums, nrow=7, ncol=3,
mChrThresPlotsscCNV_bc1f1male layout_matrix = matrix(c(1:19,NA,NA),
nrow=7,byrow = T),
top = textGrob(" "),
bottom = textGrob("Chromosome positions",gp = gpar(fontsize = 25)), left = textGrob("CentiMorgans per 10 megabase",
gp = gpar(fontsize = 25),
rot = 90))
mChrThresPlotsscCNV_bc1f1male
savePNG
Up: scCNV
Down: BC1F1 bulk sequencing
<- function (gr, bin = TRUE, chr = NULL, cumulative = FALSE,
plotGeneticDistCustmise line_size = 2)
{<- colnames(GenomicRanges::mcols(gr))
col_to_plot <- RColorBrewer::brewer.pal(ifelse(length(col_to_plot) >
sample_group_colors 2, length(col_to_plot), 3), name = "Set1")
names(sample_group_colors)[seq_along(col_to_plot)] <- col_to_plot
if (cumulative) {
::mcols(gr) <- apply(mcols(gr), 2, function(x,
GenomicRangesseq = as.character(seqnames(gr))) {
<- data.frame(x = x, seq = seq) %>% dplyr::group_by(seq) %>%
temp_df ::mutate(cum = cumsum(x))
dplyr$cum
temp_df
})
}<- data.frame(gr)
plot_df colnames(plot_df)[(ncol(plot_df) - length(col_to_plot) +
1):ncol(plot_df)] <- col_to_plot
<- plot_df %>% dplyr::mutate(x_tick = 0.5 * (.data$start +
plot_df $end))
.data<- plot_df %>% tidyr::pivot_longer(cols = col_to_plot,
plot_df names_to = "SampleGroup", values_to = "bin_dist")
<- bin_dist <- end <- SampleGroup <- NULL
x_tick if (is.null(chr)) {
<- plot_df %>% ggplot() + geom_step(mapping = aes(x = x_tick,
p y = bin_dist, color = SampleGroup), size = line_size)
}else {
<- plot_df %>% dplyr::filter(seqnames %in% chr) %>%
p ggplot() + geom_step(mapping = aes(x = end, y = bin_dist,
color = SampleGroup), size = line_size)
}<- p + scale_x_continuous(labels = scales::unit_format(unit = "M",
p scale = 1e-06)) + facet_wrap(. ~ seqnames, ncol = 1,
scales = "free") + theme_classic(base_size = 18) + xlab("Chromosome positions") +
scale_color_manual(values = sample_group_colors)
if (cumulative) {
+ ylab("cumulative centiMorgans")
p
}else {
+ ylab("centiMorgans")
p
} }
<- list()
chr_cums for(chr in paste0("chr",c(8,9,11,18))){
suppressMessages(
<-
chr_cums[[chr]] plotGeneticDistCustmise(combined_bin_dist,cumulative = F,chr =chr, line_size = 2)+
scale_color_manual("sampleType",
labels = c("Fancm-/-"= "single sperm KO",
"Fancm+/+"="single sperm WT",
"Male_KO" = "male KO" ,
"Male_WT" = "male WT" ),
values = c("Fancm-/-" = "cornflowerblue",
"Fancm+/+" = "tan1",
"Male_KO" = "cornflowerblue",
"Male_WT" = "tan1",
"Male_HET" = "grey50"))+geom_hline(yintercept = 0,
linetype = "dashed",alpha=0.4)+
scale_y_continuous(breaks = c(-15,-10,-5,0,5,10,15,20),
labels = c("15","10","5","0","5","10","15","20"))+
scale_x_continuous(labels = scales::unit_format(unit = "M",
scale = 1e-06),
limits = c(0,196e6),
breaks= c(0,50e6,100e6,150e6,195e6))+
guides(color="none")+xlab("")+ylab("")+
theme(panel.grid.minor = element_line(colour = "grey", size = 0.2),
panel.grid.major = element_blank(),
strip.text.x = element_text(size = 22),
axis.text.y = element_text(size = 25),
axis.text.x = element_text(size = 23),
axis.title = element_text(size = 25)))
}
# arg_mchrs <- arrangeGrob(chr_cums$chr8+theme(strip.text = element_text(size = 20),
# axis.text = element_text(size = 20),
# axis.title.x = element_blank(),
# plot.margin = margin(t=10,r=15)),
# chr_cums$chr9+theme(strip.text = element_text(size = 22),
# axis.text = element_text(size = 20),
# axis.title.x = element_blank(),
# plot.margin = margin(t=10,r=15)),
# chr_cums$chr11+theme(strip.text = element_text(size = 22),
# axis.text = element_text(size = 20),
# plot.margin = margin(t=10,r=15)),
# chr_cums$chr18+theme(strip.text = element_text(size = 22),
# axis.text = element_text(size = 25),plot.margin = margin(t=10,r=15)))
#
<- arrangeGrob(chr_cums$chr8+theme(axis.title.x = element_blank(),
arg_mchrs plot.margin = margin(t=10,r=8)),
$chr9+theme(axis.title.x = element_blank(),
chr_cumsplot.margin = margin(t=10,r=8)),
$chr11+theme(plot.margin = margin(t=10,r=8)),
chr_cums$chr18+theme(plot.margin = margin(t=10,r=8)))
chr_cums# grid.arrange(arg_mchrs1,left = textGrob("Cumulative centiMorgans",rot = 90,gp = gpar(fontsize=25)),
# bottom = textGrob("Chromosome positions",rot = 0,gp = gpar(fontsize=25)),nrow=1)
#
# grid.arrange(arg_mchrs2,left = textGrob("Cumulative centiMorgans",rot = 90,gp = gpar(fontsize=25)),
# bottom = textGrob("Chromosome positions",rot = 0,gp = gpar(fontsize=25)),nrow =1,ncol=1)
grid.arrange(arg_mchrs,left = textGrob("CentiMorgans per 10 megabase",rot = 90,
gp = gpar(fontsize=25)),
bottom = textGrob("Chromosome positions",rot = 0,
gp = gpar(fontsize=25)))
<- list()
chr_cums for(chr in paste0("chr",c(1,4,8,11))){
suppressMessages(
<-
chr_cums[[chr]] plotGeneticDistCustmise(combined_bin_dist,cumulative = F,chr =chr, line_size = 2)+
scale_color_manual("sampleType",
labels = c("Fancm-/-"= "single sperm KO",
"Fancm+/+"="single sperm WT",
"Male_KO" = "male KO" ,
"Male_WT" = "male WT" ),
values = c("Fancm-/-" = "cornflowerblue",
"Fancm+/+" = "tan1",
"Male_KO" = "cornflowerblue",
"Male_WT" = "tan1",
"Male_HET" = "grey50"))+geom_hline(yintercept = 0,
linetype = "dashed",alpha=0.4)+
scale_y_continuous(breaks = c(-15,-10,-5,0,5,10,15,20),
labels = c("15","10","5","0","5","10","15","20"))+
scale_x_continuous(labels = scales::unit_format(unit = "M",
scale = 1e-06),limits = c(0,196e6),
breaks= c(0,50e6,100e6,150e6,195e6))+
guides(color="none")+xlab("")+ylab("")+
theme(panel.grid.minor = element_line(colour = "grey", size = 0.2),
panel.grid.major = element_blank(),
strip.text.x = element_text(size = 22),
axis.text.y = element_text(size = 25),
axis.text.x = element_text(size = 23),
axis.title = element_text(size = 25)))
}
<- arrangeGrob(chr_cums$chr1+theme(axis.title.x = element_blank(),
arg_mchrs plot.margin = margin(t=10,r=15)),
$chr4+theme(axis.title.x = element_blank(),
chr_cumsplot.margin = margin(t=10,r=15)),
$chr8+theme(plot.margin = margin(t=10,r=15)),
chr_cums$chr11+theme(plot.margin = margin(t=10,r=15)))
chr_cums
grid.arrange(arg_mchrs,left = textGrob("CentiMorgans per 10 megabase",rot = 90,
gp = gpar(fontsize=25)),
bottom = textGrob("Chromosome positions",rot = 0,
gp = gpar(fontsize=25)))
Down: female
Up: male
= 1
i mcols(bc1f1_samples_dist_bin_dist)[,c(2:4)] <- apply(mcols(bc1f1_samples_dist_bin_dist)[,c(2:4)],2,function(x){
-1)*x
(
})
plotGeneticDist(bc1f1_samples_dist_bin_dist,cumulative = F,chr = "chr8")+
scale_color_manual("sampleType",
values = c("Female_WT" = "tan1",
"Female_KO" = "cornflowerblue",
"Female_HET" = "grey50",
"Male_KO" = "cornflowerblue",
"Male_WT" = "tan1",
"Male_HET" = "grey50"))+
scale_y_continuous(breaks = c(-15,-10,-5,0,5,10,15,20),
labels = c("15","10","5","0","5","10","15","20"))+
scale_x_continuous(labels = scales::unit_format(unit = "M",
scale = 1e-06),limits = c(0,196e6),
breaks= c(0,50e6,100e6,150e6,195e6))+
guides(color="none")+xlab("")+ylab("")+theme(panel.grid.minor =
element_line(colour = "grey", size = 0.2),
panel.grid.major = element_blank())
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.
Scale for 'x' is already present. Adding another scale for 'x', which will
replace the existing scale.
<- list()
chr_cums for(chr in paste0("chr",c(1:19)) ){
suppressMessages(
<-
chr_cums[[chr]] plotGeneticDist(bc1f1_samples_dist_bin_dist,cumulative = F,chr = chr)+
scale_color_manual("sampleType",
values = c("Female_WT" = "tan1",
"Female_KO" = "cornflowerblue",
"Female_HET" = "grey50",
"Male_KO" = "cornflowerblue",
"Male_WT" = "tan1",
"Male_HET" = "grey50"))+geom_hline(yintercept = 0,
linetype = "dashed",alpha=0.4)+
scale_y_continuous(breaks = c(-15,-10,-5,0,5,10,15,20),
labels = c("15","10","5","0","5","10","15","20"))+
scale_x_continuous(labels = scales::unit_format(unit = "M",
scale = 1e-06),limits = c(0,196e6),
breaks= c(0,50e6,100e6,150e6,195e6))+
guides(color="none")+xlab("")+ylab("")+theme(panel.grid.minor =
element_line(colour = "grey", size = 0.2),axis.text.x = element_text(size=rel(0.8)),
panel.grid.major = element_blank(),
plot.margin = margin(t=10,r=15)))
}
<- marrangeGrob(chr_cums, ncol=3,
mChrThresPlots_female_male layout_matrix = matrix(c(1:19,NA,NA),nrow=7,byrow = T),
top = textGrob(" "),
bottom = textGrob("Chromosome positions",gp = gpar(fontsize = 25)), left = textGrob("CentiMorgans per 10 megabase",
gp = gpar(fontsize = 25),
rot = 90))
mChrThresPlots_female_male
savePNG
Permutation is performed by permuting the sample type labels among the single cells or bulk samples and caculate the differences in genetic distances between sample groups.
register(BPPARAM = MulticoreParam(workers = 10))
<- function(co_count, B = 1000, bin_size = 1e7,
permuteSampleType permuteCol = "sampleType"){
<- table(colData(co_count)[,permuteCol])[1]
len_1 <- bplapply(1:B, function(x){
bbl
<- co_count
permutedCoCount <- sample(seq(ncol(permutedCoCount)),len_1)
type1Idx <- setdiff(seq(ncol(permutedCoCount)),type1Idx )
type2Idx $sampleType[type1Idx] <- names(table(permutedCoCount$sampleType))[1]
permutedCoCount$sampleType[type2Idx] <- names(table(permutedCoCount$sampleType))[2]
permutedCoCount
<- calGeneticDist(permutedCoCount,group_by = permuteCol,
permutedCoCount_dist_bin_dist bin_size = bin_size)
mcols(permutedCoCount_dist_bin_dist)
})
<- calGeneticDist(co_count,group_by = permuteCol,
observed_dist_bin_dist bin_size = bin_size)
<- mcols(observed_dist_bin_dist)[,1] - mcols(observed_dist_bin_dist)[,2]
observed_dist_bin_diff
<- sapply(bbl,function(x){x[,2]})
mt_scnv_permute <- sapply(bbl,function(x){x[,1]})
wt_scnv_permute <- mt_scnv_permute - wt_scnv_permute
permute_statistic <- rowSums(permute_statistic >= observed_dist_bin_diff)
permute_statistic <- permp(permute_statistic,nperm = B,n1 =len_1,n2 = ncol(co_count)-len_1)
permute_pvals
<- observed_dist_bin_dist
temp_gr mcols(temp_gr) <- permute_pvals
temp_gr }
<- permuteSampleType(co_count = scCNV) scCNV_pval_bins
hist(scCNV_pval_bins$X)
After multiple testing correction:
<- p.adjust(mcols(scCNV_pval_bins)[,1],"fdr")
scCNV_pval_bins_adj
mcols(scCNV_pval_bins) <- data.frame(scCNV_p.adj = scCNV_pval_bins_adj)
There is no bins that was detected as having significant differences in genetic distances in single sperm dataset.
any(scCNV_pval_bins$scCNV_p.adj<0.05)
[1] FALSE
<- bc1f1_samples_dist_male
bc1f1_samples_dist_male_2groups <- bc1f1_samples_dist_female
bc1f1_samples_dist_female_2groups
$sampleType <- plyr::mapvalues(bc1f1_samples_dist_male_2groups$sampleGroup,
bc1f1_samples_dist_male_2groupsfrom = c("Male_HET","Male_WT","Male_KO"),
to = c("Fancm+/*","Fancm+/*","Fancm-/-") )
$sampleType <- plyr::mapvalues(bc1f1_samples_dist_female_2groups$sampleGroup,
bc1f1_samples_dist_female_2groupsfrom = c("Female_HET","Female_WT","Female_KO"),
to = c("Fancm+/*","Fancm+/*","Fancm-/-") )
<- permuteSampleType(co_count = bc1f1_samples_dist_female_2groups)
bc1f1_samples_dist_female_2groups_pval_bins <- permuteSampleType(co_count = bc1f1_samples_dist_male_2groups)
bc1f1_male_samples_2groups_pval_bins
hist(bc1f1_male_samples_2groups_pval_bins$X)
hist(bc1f1_samples_dist_female_2groups_pval_bins$X)
<- p.adjust(mcols(bc1f1_male_samples_2groups_pval_bins)[,1],"fdr")
bc1f1_male_samples_2groups_pval_bins_adj mcols(bc1f1_male_samples_2groups_pval_bins) <- data.frame(bulkBC1F1Male_p.adj = bc1f1_male_samples_2groups_pval_bins_adj)
<- p.adjust(mcols(bc1f1_samples_dist_female_2groups_pval_bins)[,1],"fdr")
bc1f1_female_samples_2groups_pval_bins_adj mcols(bc1f1_samples_dist_female_2groups_pval_bins) <- data.frame(bulkBC1F1Female_p.adj = bc1f1_female_samples_2groups_pval_bins_adj)
Bins that show significant difference between Fancm -/- and Fancm +/+ in scCNV:
hist(scCNV_pval_bins_adj)
any(scCNV_pval_bins_adj<0.05)
[1] FALSE
Bins that show significant differences between Fancm -/- and Fancm +/* in bc1f1 males:
hist(bc1f1_male_samples_2groups_pval_bins_adj)
any(bc1f1_male_samples_2groups_pval_bins_adj<0.05)
[1] FALSE
Bins that show significant differences between Fancm -/- and Fancm +/* in bc1f1 males:
hist(bc1f1_female_samples_2groups_pval_bins_adj)
any(bc1f1_female_samples_2groups_pval_bins_adj<0.05)
[1] FALSE
From above histogram plot, there is no significant differences in genetic distances in each chromosome bin between two sample groups in scCNV or Bulk samples.
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Rocky Linux 8.5 (Green Obsidian)
Matrix products: default
BLAS/LAPACK: /usr/lib64/libopenblasp-r0.3.12.so
locale:
[1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8
[5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8
[7] LC_PAPER=en_AU.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats4 stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] statmod_1.4.36 BiocParallel_1.28.3
[3] gridExtra_2.3 SummarizedExperiment_1.24.0
[5] Biobase_2.54.0 GenomicRanges_1.46.1
[7] GenomeInfoDb_1.30.1 IRanges_2.28.0
[9] S4Vectors_0.32.3 BiocGenerics_0.40.0
[11] MatrixGenerics_1.6.0 matrixStats_0.61.0
[13] dplyr_1.0.7 ggplot2_3.3.5
[15] comapr_0.99.43 readxl_1.3.1
loaded via a namespace (and not attached):
[1] backports_1.4.1 circlize_0.4.13 Hmisc_4.6-0
[4] workflowr_1.7.0 BiocFileCache_2.2.1 plyr_1.8.6
[7] lazyeval_0.2.2 splines_4.1.2 digest_0.6.29
[10] foreach_1.5.2 ensembldb_2.18.3 htmltools_0.5.2
[13] fansi_1.0.2 magrittr_2.0.2 checkmate_2.0.0
[16] memoise_2.0.1 BSgenome_1.62.0 cluster_2.1.2
[19] Biostrings_2.62.0 prettyunits_1.1.1 jpeg_0.1-9
[22] colorspace_2.0-2 blob_1.2.2 rappdirs_0.3.3
[25] xfun_0.29 crayon_1.4.2 RCurl_1.98-1.5
[28] jsonlite_1.7.3 survival_3.2-13 VariantAnnotation_1.40.0
[31] iterators_1.0.14 glue_1.6.1 gtable_0.3.0
[34] zlibbioc_1.40.0 XVector_0.34.0 DelayedArray_0.20.0
[37] shape_1.4.6 scales_1.1.1 DBI_1.1.2
[40] Rcpp_1.0.8 viridisLite_0.4.0 progress_1.2.2
[43] htmlTable_2.4.0 foreign_0.8-81 bit_4.0.4
[46] Formula_1.2-4 htmlwidgets_1.5.4 httr_1.4.2
[49] RColorBrewer_1.1-2 ellipsis_0.3.2 farver_2.1.0
[52] pkgconfig_2.0.3 XML_3.99-0.8 Gviz_1.38.3
[55] nnet_7.3-16 dbplyr_2.1.1 utf8_1.2.2
[58] tidyselect_1.1.1 labeling_0.4.2 rlang_1.0.0
[61] reshape2_1.4.4 later_1.3.0 AnnotationDbi_1.56.2
[64] munsell_0.5.0 cellranger_1.1.0 tools_4.1.2
[67] cachem_1.0.6 cli_3.1.1 generics_0.1.1
[70] RSQLite_2.2.9 evaluate_0.14 stringr_1.4.0
[73] fastmap_1.1.0 yaml_2.2.2 knitr_1.37
[76] bit64_4.0.5 fs_1.5.2 purrr_0.3.4
[79] KEGGREST_1.34.0 AnnotationFilter_1.18.0 xml2_1.3.3
[82] biomaRt_2.50.3 compiler_4.1.2 rstudioapi_0.13
[85] plotly_4.10.0 filelock_1.0.2 curl_4.3.2
[88] png_0.1-7 tibble_3.1.6 stringi_1.7.6
[91] highr_0.9 GenomicFeatures_1.46.4 lattice_0.20-45
[94] ProtGenerics_1.26.0 Matrix_1.4-0 vctrs_0.3.8
[97] pillar_1.6.5 lifecycle_1.0.1 jquerylib_0.1.4
[100] GlobalOptions_0.1.2 data.table_1.14.2 bitops_1.0-7
[103] httpuv_1.6.5 rtracklayer_1.54.0 R6_2.5.1
[106] BiocIO_1.4.0 latticeExtra_0.6-29 promises_1.2.0.1
[109] codetools_0.2-18 dichromat_2.0-0 assertthat_0.2.1
[112] rprojroot_2.0.2 rjson_0.2.21 withr_2.4.3
[115] GenomicAlignments_1.30.0 Rsamtools_2.10.0 GenomeInfoDbData_1.2.7
[118] parallel_4.1.2 hms_1.1.1 rpart_4.1-15
[121] tidyr_1.2.0 rmarkdown_2.11 git2r_0.29.0
[124] biovizBase_1.42.0 base64enc_0.1-3 restfulr_0.0.13
::session_info() devtools
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.1.2 (2021-11-01)
os Rocky Linux 8.5 (Green Obsidian)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Melbourne
date 2022-03-14
pandoc 2.11.4 @ /usr/lib/rstudio-server/bin/pandoc/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
AnnotationDbi 1.56.2 2021-11-09 [1] Bioconductor
AnnotationFilter 1.18.0 2021-10-26 [1] Bioconductor
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.1.2)
backports 1.4.1 2021-12-13 [1] CRAN (R 4.1.2)
base64enc 0.1-3 2015-07-28 [1] CRAN (R 4.1.2)
Biobase * 2.54.0 2021-10-26 [1] Bioconductor
BiocFileCache 2.2.1 2022-01-23 [1] Bioconductor
BiocGenerics * 0.40.0 2021-10-26 [1] Bioconductor
BiocIO 1.4.0 2021-10-26 [1] Bioconductor
BiocParallel * 1.28.3 2021-12-09 [1] Bioconductor
biomaRt 2.50.3 2022-02-03 [1] Bioconductor
Biostrings 2.62.0 2021-10-26 [1] Bioconductor
biovizBase 1.42.0 2021-10-26 [1] Bioconductor
bit 4.0.4 2020-08-04 [1] CRAN (R 4.1.2)
bit64 4.0.5 2020-08-30 [1] CRAN (R 4.1.2)
bitops 1.0-7 2021-04-24 [1] CRAN (R 4.1.2)
blob 1.2.2 2021-07-23 [1] CRAN (R 4.1.2)
brio 1.1.3 2021-11-30 [1] CRAN (R 4.1.0)
BSgenome 1.62.0 2021-10-26 [1] Bioconductor
cachem 1.0.6 2021-08-19 [1] CRAN (R 4.1.0)
callr 3.7.0 2021-04-20 [1] CRAN (R 4.1.2)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.1.2)
checkmate 2.0.0 2020-02-06 [1] CRAN (R 4.1.0)
circlize 0.4.13 2021-06-09 [1] CRAN (R 4.1.0)
cli 3.1.1 2022-01-20 [1] CRAN (R 4.1.2)
cluster 2.1.2 2021-04-17 [2] CRAN (R 4.1.2)
codetools 0.2-18 2020-11-04 [2] CRAN (R 4.1.2)
colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.2)
comapr * 0.99.43 2022-03-09 [1] Github (ruqianl/comapr@915d97c)
crayon 1.4.2 2021-10-29 [1] CRAN (R 4.1.2)
curl 4.3.2 2021-06-23 [1] CRAN (R 4.1.2)
data.table 1.14.2 2021-09-27 [1] CRAN (R 4.1.2)
DBI 1.1.2 2021-12-20 [1] CRAN (R 4.1.2)
dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.1.2)
DelayedArray 0.20.0 2021-10-26 [1] Bioconductor
desc 1.4.0 2021-09-28 [1] CRAN (R 4.1.0)
devtools 2.4.3 2021-11-30 [1] CRAN (R 4.1.0)
dichromat 2.0-0 2013-01-24 [1] CRAN (R 4.1.0)
digest 0.6.29 2021-12-01 [1] CRAN (R 4.1.2)
dplyr * 1.0.7 2021-06-18 [1] CRAN (R 4.1.2)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.1.2)
ensembldb 2.18.3 2022-01-13 [1] Bioconductor
evaluate 0.14 2019-05-28 [1] CRAN (R 4.1.2)
fansi 1.0.2 2022-01-14 [1] CRAN (R 4.1.2)
farver 2.1.0 2021-02-28 [1] CRAN (R 4.1.2)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.2)
filelock 1.0.2 2018-10-05 [1] CRAN (R 4.1.0)
foreach 1.5.2 2022-02-02 [1] CRAN (R 4.1.0)
foreign 0.8-81 2020-12-22 [2] CRAN (R 4.1.2)
Formula 1.2-4 2020-10-16 [1] CRAN (R 4.1.0)
fs 1.5.2 2021-12-08 [1] CRAN (R 4.1.2)
generics 0.1.1 2021-10-25 [1] CRAN (R 4.1.2)
GenomeInfoDb * 1.30.1 2022-01-30 [1] Bioconductor
GenomeInfoDbData 1.2.7 2022-01-28 [1] Bioconductor
GenomicAlignments 1.30.0 2021-10-26 [1] Bioconductor
GenomicFeatures 1.46.4 2022-01-20 [1] Bioconductor
GenomicRanges * 1.46.1 2021-11-18 [1] Bioconductor
ggplot2 * 3.3.5 2021-06-25 [1] CRAN (R 4.1.2)
git2r 0.29.0 2021-11-22 [1] CRAN (R 4.1.2)
GlobalOptions 0.1.2 2020-06-10 [1] CRAN (R 4.1.0)
glue 1.6.1 2022-01-22 [1] CRAN (R 4.1.2)
gridExtra * 2.3 2017-09-09 [1] CRAN (R 4.1.0)
gtable 0.3.0 2019-03-25 [1] CRAN (R 4.1.2)
Gviz 1.38.3 2022-01-23 [1] Bioconductor
highr 0.9 2021-04-16 [1] CRAN (R 4.1.2)
Hmisc 4.6-0 2021-10-07 [1] CRAN (R 4.1.0)
hms 1.1.1 2021-09-26 [1] CRAN (R 4.1.2)
htmlTable 2.4.0 2022-01-04 [1] CRAN (R 4.1.0)
htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.2)
htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.1.0)
httpuv 1.6.5 2022-01-05 [1] CRAN (R 4.1.2)
httr 1.4.2 2020-07-20 [1] CRAN (R 4.1.2)
IRanges * 2.28.0 2021-10-26 [1] Bioconductor
iterators 1.0.14 2022-02-05 [1] CRAN (R 4.1.0)
jpeg 0.1-9 2021-07-24 [1] CRAN (R 4.1.0)
jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.1.2)
jsonlite 1.7.3 2022-01-17 [1] CRAN (R 4.1.2)
KEGGREST 1.34.0 2021-10-26 [1] Bioconductor
knitr 1.37 2021-12-16 [1] CRAN (R 4.1.0)
labeling 0.4.2 2020-10-20 [1] CRAN (R 4.1.2)
later 1.3.0 2021-08-18 [1] CRAN (R 4.1.0)
lattice 0.20-45 2021-09-22 [2] CRAN (R 4.1.2)
latticeExtra 0.6-29 2019-12-19 [1] CRAN (R 4.1.0)
lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.1.0)
lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.2)
magrittr 2.0.2 2022-01-26 [1] CRAN (R 4.1.2)
Matrix 1.4-0 2021-12-08 [1] CRAN (R 4.1.2)
MatrixGenerics * 1.6.0 2021-10-26 [1] Bioconductor
matrixStats * 0.61.0 2021-09-17 [1] CRAN (R 4.1.2)
memoise 2.0.1 2021-11-26 [1] CRAN (R 4.1.0)
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.2)
nnet 7.3-16 2021-05-03 [2] CRAN (R 4.1.2)
pillar 1.6.5 2022-01-25 [1] CRAN (R 4.1.2)
pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.1.0)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.2)
pkgload 1.2.4 2021-11-30 [1] CRAN (R 4.1.0)
plotly 4.10.0 2021-10-09 [1] CRAN (R 4.1.0)
plyr 1.8.6 2020-03-03 [1] CRAN (R 4.1.0)
png 0.1-7 2013-12-03 [1] CRAN (R 4.1.0)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.1.2)
processx 3.5.2 2021-04-30 [1] CRAN (R 4.1.2)
progress 1.2.2 2019-05-16 [1] CRAN (R 4.1.2)
promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.1.0)
ProtGenerics 1.26.0 2021-10-26 [1] Bioconductor
ps 1.6.0 2021-02-28 [1] CRAN (R 4.1.2)
purrr 0.3.4 2020-04-17 [1] CRAN (R 4.1.2)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.2)
rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.1.2)
RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 4.1.2)
Rcpp 1.0.8 2022-01-13 [1] CRAN (R 4.1.2)
RCurl 1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)
readxl * 1.3.1 2019-03-13 [1] CRAN (R 4.1.2)
remotes 2.4.2 2021-11-30 [1] CRAN (R 4.1.0)
reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.1.0)
restfulr 0.0.13 2017-08-06 [1] CRAN (R 4.1.0)
rjson 0.2.21 2022-01-09 [1] CRAN (R 4.1.0)
rlang 1.0.0 2022-01-26 [1] CRAN (R 4.1.2)
rmarkdown 2.11 2021-09-14 [1] CRAN (R 4.1.2)
rpart 4.1-15 2019-04-12 [2] CRAN (R 4.1.2)
rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.1.0)
Rsamtools 2.10.0 2021-10-26 [1] Bioconductor
RSQLite 2.2.9 2021-12-06 [1] CRAN (R 4.1.0)
rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.1.2)
rtracklayer 1.54.0 2021-10-26 [1] Bioconductor
S4Vectors * 0.32.3 2021-11-21 [1] Bioconductor
scales 1.1.1 2020-05-11 [1] CRAN (R 4.1.2)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.1.0)
shape 1.4.6 2021-05-19 [1] CRAN (R 4.1.0)
statmod * 1.4.36 2021-05-10 [1] CRAN (R 4.1.2)
stringi 1.7.6 2021-11-29 [1] CRAN (R 4.1.0)
stringr 1.4.0 2019-02-10 [1] CRAN (R 4.1.0)
SummarizedExperiment * 1.24.0 2021-10-26 [1] Bioconductor
survival 3.2-13 2021-08-24 [2] CRAN (R 4.1.2)
testthat 3.1.2 2022-01-20 [1] CRAN (R 4.1.0)
tibble 3.1.6 2021-11-07 [1] CRAN (R 4.1.2)
tidyr 1.2.0 2022-02-01 [1] CRAN (R 4.1.0)
tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.1.2)
usethis 2.1.5 2021-12-09 [1] CRAN (R 4.1.0)
utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.2)
VariantAnnotation 1.40.0 2021-10-26 [1] Bioconductor
vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.1.2)
viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.1.2)
withr 2.4.3 2021-11-30 [1] CRAN (R 4.1.2)
workflowr 1.7.0 2021-12-21 [1] CRAN (R 4.1.2)
xfun 0.29 2021-12-14 [1] CRAN (R 4.1.2)
XML 3.99-0.8 2021-09-17 [1] CRAN (R 4.1.0)
xml2 1.3.3 2021-11-30 [1] CRAN (R 4.1.0)
XVector 0.34.0 2021-10-26 [1] Bioconductor
yaml 2.2.2 2022-01-25 [1] CRAN (R 4.1.2)
zlibbioc 1.40.0 2021-10-26 [1] Bioconductor
[1] /mnt/beegfs/mccarthy/backed_up/general/rlyu/Software/Rlibs/4.1
[2] /opt/R/4.1.2/lib/R/library
──────────────────────────────────────────────────────────────────────────────