Last updated: 2022-03-14

Checks: 5 1

Knit directory: yeln_2019_spermtyping/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190102) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init in your project directory.


This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start.


Bulk BC1F1 HET versus WT

bc1f1_samples <- readRDS(file = "output/outputR/analysisRDS/all_rse_count_07-20.rds")
BiocParallel::register(MulticoreParam(workers = 12))
bc1f1_samples_dist <- calGeneticDist(bc1f1_samples,group_by = "sampleGroup"  )
bc1f1_samples_dist_male <- calGeneticDist(bc1f1_samples[,bc1f1_samples$sampleGroup %in%  
                                                          c("Male_HET","Male_WT","Male_KO")],
                                          group_by = "sampleGroup"  )

bc1f1_samples_dist_female <- calGeneticDist(bc1f1_samples[,bc1f1_samples$sampleGroup %in%  
                                                          c("Female_HET","Female_WT","Female_KO")],group_by = "sampleGroup")

(observed_male_wt_het_diff <- colSums(rowData(bc1f1_samples_dist_male)[,2][,c("Male_WT","Male_HET")]))
 Male_WT Male_HET 
1255.786 1242.336 
(observed_male_ko_wt_diff <- colSums(rowData(bc1f1_samples_dist_male)[,2][,c("Male_KO","Male_WT")]))
 Male_KO  Male_WT 
1339.082 1255.786 
(colSums(rowData(bc1f1_samples_dist_female)[,2]))
 Female_KO  Female_WT Female_HET 
  1438.272   1406.645   1364.624 
(colSums(rowData(bc1f1_samples_dist_male)[,2]))
 Male_KO  Male_WT Male_HET 
1339.082 1255.786 1242.336 
permResult_male_wt_het <- permuteDist(bc1f1_samples_dist_male[,bc1f1_samples_dist_male$sampleGroup %in% c("Male_WT","Male_HET")],
            group_by = "sampleGroup",B = 1000)
permResult_male_wt_het$observed_diff
[1] 13.45047
permute_pvals_male_wt_het <- permp(sum(permResult_male_wt_het$permutes >= permResult_male_wt_het$observed_diff),
                                   nperm = 1000,n1 = permResult_male_wt_het$nSample[1],
                                   permResult_male_wt_het$nSample[2],
                                    twosided = FALSE)
permute_pvals_male_wt_het  
[1] 0.4385614
ggplot()+geom_histogram(mapping = aes(x = permResult_male_wt_het$permutes))+
  theme_bw(base_size = 18)+
  geom_vline(xintercept = permResult_male_wt_het$observed_diff)+
  ggtitle(paste0("BC1F1 male \n(Fancm -/ versus Fancm +/-), p: ", 
                 round(permute_pvals_male_wt_het,2)))+
  xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Bulk BC1F1 KO versus WT

permResult_male_ko_wt <- permuteDist(bc1f1_samples_dist_male[,bc1f1_samples_dist_male$sampleGroup %in% c("Male_KO","Male_WT")],
            group_by = "sampleGroup",B = 1000)
permute_pvals_male_ko_wt <- permp(sum(permResult_male_ko_wt$permutes >= permResult_male_ko_wt$observed_diff),
                                   nperm = 1000,n1 = permResult_male_ko_wt$nSample[1],
                                   permResult_male_ko_wt$nSample[2],twosided = FALSE)
permute_pvals_male_ko_wt  
[1] 0.08191808
ggplot()+geom_histogram(mapping = aes(x = permResult_male_ko_wt$permutes))+theme_bw(base_size = 18)+geom_vline(xintercept = permResult_male_ko_wt$observed_diff)+ggtitle(paste0("BC1F1 male \n(Fancm -/- versus Fancm +/+), p: ", round(permute_pvals_male_ko_wt,2)))+xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Bulk BC1F1 KO versus HET

permResult_male_ko_het <- permuteDist(bc1f1_samples_dist_male[,bc1f1_samples_dist_male$sampleGroup %in% c("Male_KO","Male_HET")],
            group_by = "sampleGroup",B = 1000)
permute_pvals_male_ko_het <- permp(sum(permResult_male_ko_het$permutes >= permResult_male_ko_het$observed_diff),
                                   nperm = 1000,n1 = permResult_male_ko_het$nSample[1],
                                   permResult_male_ko_het$nSample[2],twosided = FALSE)
permute_pvals_male_ko_het 
[1] 0.04095904
ggplot()+geom_histogram(mapping = aes(x = permResult_male_ko_het$permutes))+theme_bw(base_size = 18)+geom_vline(xintercept = permResult_male_ko_het$observed_diff)+ggtitle(paste0("BC1F1 male \n(Fancm -/- versus Fancm +/-), p: ", round(permute_pvals_male_ko_het,2)))+xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Bulk BC1F1 KO versus nonKO

bc1f1_samples_dist_male$sampleType <- plyr::mapvalues(bc1f1_samples_dist_male$sampleGroup, 
                                                      from = c("Male_KO","Male_WT","Male_HET"),
                                                      to  = c("Male_KO","Male_nKO","Male_nKO"))
permResult_male_ko_nko <- permuteDist(bc1f1_samples_dist_male,
            group_by = "sampleType",B = 1000)
permute_pvals_male_ko_nko <- permp(sum(permResult_male_ko_nko$permutes >= permResult_male_ko_nko$observed_diff),
                                   nperm = 1000,n1 = permResult_male_ko_nko$nSample[1],
                                   permResult_male_ko_nko$nSample[2],twosided = FALSE)
permute_pvals_male_ko_nko  
[1] 0.03496503
ggplot()+geom_histogram(mapping = aes(x = permResult_male_ko_nko$permutes))+
  theme_bw(base_size = 18)+
  geom_vline(xintercept = permResult_male_ko_nko$observed_diff)+
  ggtitle(paste0("BC1F1 male \n(Fancm -/- versus Fancm +/*), p: ", round(permute_pvals_male_ko_nko,2)))+
  xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## PCR method

all_rse_pcr_map <-  readRDS(file ="output/outputR/analysisRDS/all_rse_pcr_map.rds")
all_rse_pcr_map$sampleGroup <- plyr::mapvalues(all_rse_pcr_map$sampleType,
                                              from = c("Fancm-/-", "Fancm+/+"),
                                              to = c("Mutant","Wildtype"))
suppressWarnings(permResult_pcr_ko_wt <- permuteDist(all_rse_pcr_map,group_by = "sampleGroup",B=3000))
permute_pvals_pcr_ko_wt <- permp(sum(permResult_pcr_ko_wt$permutes >= permResult_pcr_ko_wt$observed_diff, na.rm = T),
                                   nperm = sum(!is.na(permResult_pcr_ko_wt$permutes)),n1 = permResult_pcr_ko_wt$nSample[1],
                                   permResult_pcr_ko_wt$nSample[2],twosided = FALSE)
ggplot()+geom_histogram(mapping = aes(x = permResult_pcr_ko_wt$permutes))+theme_bw(base_size = 18)+geom_vline(xintercept = permResult_pcr_ko_wt$observed_diff)+ggtitle(paste0("BC1F1 PCR puos male \n(Fancm -/- versus Fancm +/+), p: ", round(permute_pvals_pcr_ko_wt,3)))+xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Warning: Removed 38 rows containing non-finite values (stat_bin).

Bulk BC1F1 Female KO versus non-KO

bc1f1_samples_dist_female$sampleType <- plyr::mapvalues(bc1f1_samples_dist_female$sampleGroup, 
                                                      from = c("Female_KO","Female_WT","Female_HET"),
                                                      to  = c("Female_KO","Female_nKO","Female_nKO"))
permResult_female_ko_nko <- permuteDist(bc1f1_samples_dist_female,
            group_by = "sampleType",B = 1000)
bulk_bc1f1_female_ko_nko <- calGeneticDist(bc1f1_samples_dist_female,group_by = "sampleType")
colSums(rowData(bulk_bc1f1_female_ko_nko)[,2])
 Female_KO Female_nKO 
  1438.272   1385.232 
permute_pvals_female_ko_nko <- permp(sum(permResult_female_ko_nko$permutes >= permResult_female_ko_nko$observed_diff),
                                   nperm = 1000,n1 = permResult_female_ko_nko$nSample[1],
                                   permResult_female_ko_nko$nSample[2],twosided = FALSE)
permute_pvals_female_ko_nko  
[1] 0.1468531
ggplot()+geom_histogram(mapping = aes(x = permResult_female_ko_nko$permutes))+theme_bw(base_size = 18)+geom_vline(xintercept = permResult_female_ko_nko$observed_diff)+ggtitle(paste0("BC1F1 female \n(Fancm +/+ versus Fancm +/*), p: ", round(permute_pvals_female_ko_nko,2)))+xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

scCNV

scCNV <- readRDS(file  = "~/Projects/rejy_2020_single-sperm-co-calling/output/outputR/analysisRDS/countsAll-settings4.3-scCNV-CO-counts_07-mar-2022.rds")

scCNV by Fancm genotype

x <- c("mutant","mutant","wildtype","mutant",
                                           "wildtype","wildtype")
xx <- c("Fancm-/-","Fancm-/-","Fancm+/+","Fancm-/-",
                                           "Fancm+/+","Fancm+/+")

scCNV$sampleType <- plyr::mapvalues(scCNV$sampleGroup,from = c("WC_522",
                                                               "WC_526",
                                                               "WC_CNV_42",
                                                               "WC_CNV_43",
                                                               "WC_CNV_44",
                                                               "WC_CNV_53"),
                                    to =x)

scCNV_dist_type <- calGeneticDist(scCNV,group_by = "sampleType")

colSums(as.matrix(rowData(scCNV_dist_type)$kosambi))
  mutant wildtype 
1387.336 1227.412 
permResult_sccnv_ko_wt <- permuteDist(scCNV,
            group_by = "sampleType",B = 1000)
permute_pvals_scCNV_ko_wt <- permp(sum(permResult_sccnv_ko_wt$permutes >= permResult_sccnv_ko_wt$observed_diff),
                                   nperm = 1000,n1 = permResult_sccnv_ko_wt$nSample[1],
                                   permResult_sccnv_ko_wt$nSample[2],twosided = FALSE)
permute_pvals_scCNV_ko_wt  
[1] 0.000999001
ggplot()+geom_histogram(mapping = aes(x = permResult_sccnv_ko_wt$permutes))+theme_bw(base_size = 18)+geom_vline(xintercept = permResult_sccnv_ko_wt$observed_diff)+ggtitle(paste0("F1 single sperm sequencing \n(Fancm +/+ versus Fancm +/-), p: ", round(permute_pvals_scCNV_ko_wt,3)))+xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Chromosome difference

permuteSampleType <- function(co_count, B = 1000,
                              permuteCol = "sampleType"){
  len_1 <- table(colData(co_count)[,permuteCol])[1]
  permutedCoCount <- co_count

  bbl <-  bptry(bplapply(1:B, function(x){
     
    type1Idx <- sample(seq(ncol(permutedCoCount)),len_1)
    type2Idx <- setdiff(seq(ncol(permutedCoCount)),type1Idx )
    stopifnot(length(type1Idx)>0)
    stopifnot(length(type2Idx)>0)
    # sink(NULL, type = "message")
    # message("type1Idx",paste0(type1Idx,collapse = ","),"\n")
    # message("type2Idx",paste0(type2Idx,collapse = ","),"\n")
    # 
    #Sys.sleep(3)
    permutedCoCount$sampleType[type1Idx] <- names(table(permutedCoCount$sampleType))[1]
    permutedCoCount$sampleType[type2Idx] <- names(table(permutedCoCount$sampleType))[2]
    
    permutedCoCount_dist_bin_dist <- calGeneticDist(permutedCoCount,group_by = permuteCol)
    mcols(permutedCoCount_dist_bin_dist)[,2]
    
  }),bplist_error=identity)
 
 
 observed_chr_dist_diff <-  calGeneticDist(co_count,group_by = permuteCol)
 observed_chr_dist_diff <- bplapply(paste0("chr",1:19), function(chr){
    tmp <- observed_chr_dist_diff[seqnames(observed_chr_dist_diff) ==chr,]
    c("chrom"=chr,colSums(rowData(tmp)[,2]),
      "diff" = (colSums(rowData(tmp)[,2])[1] - colSums(rowData(tmp)[,2])[2]) )})

 observed_dist_bin_diff <- do.call(rbind,observed_chr_dist_diff)

 mt_scnv_permute <- sapply(bbl,function(x){
    lapply(paste0("chr",1:19), function(chr){
    tmp <- x[as.character(seqnames(co_count))==chr,]
    c("chrom"= chr,colSums(tmp),
      "diff" = (colSums(tmp)["mutant"] -colSums(tmp)["wildtype"]))})
  })
permute_statistic <- data.frame(do.call(rbind,mt_scnv_permute))
colnames(permute_statistic) <- c("chrom","wildtype","mutant","diff")
permute_statistic$diff <- as.numeric(permute_statistic$diff)
observed_dist_bin_diff <- data.frame(observed_dist_bin_diff)
observed_dist_bin_diff$diff.mutant <- as.numeric(observed_dist_bin_diff$diff.mutant)
p <- permute_statistic %>% dplyr::left_join(observed_dist_bin_diff,by ="chrom") %>% 
  mutate(diff.mutant = as.numeric(diff.mutant)) %>% ggplot()+ geom_histogram(mapping = aes(x = diff)) +
  geom_vline(mapping = aes(xintercept=diff.mutant)) +facet_wrap(.~chrom)

permute_statistic_agg <- lapply(paste0("chr",1:19), function(chr){
    permute_statistic %>% filter(chrom ==chr) %>%
      summarise(extrtimes = sum(diff >= (observed_dist_bin_diff$diff.mutant[observed_dist_bin_diff$chrom==chr])),
                chrom = chr)
  })
permute_statistic_agg <- do.call(rbind, permute_statistic_agg)
permute_pvals <- permp(permute_statistic_agg[,1],nperm = B,n1 =len_1,
                       n2 = (ncol(co_count)-len_1),twosided = FALSE)

temp_gr <- cbind(permute_statistic_agg,pval = permute_pvals)


list(p_val = temp_gr,
     plot = p)
}
permuteCol <- "sampleType"
permute_pvals  <- permuteSampleType(scCNV, B=1000)
permute_pvals$p_val
   extrtimes chrom        pval
1          3  chr1 0.003996004
2         13  chr2 0.013986014
3        546  chr3 0.546453546
4          1  chr4 0.001998002
5        389  chr5 0.389610390
6        311  chr6 0.311688312
7        143  chr7 0.143856144
8          2  chr8 0.002997003
9         28  chr9 0.028971029
10       610 chr10 0.610389610
11         5 chr11 0.005994006
12       549 chr12 0.549450549
13         7 chr13 0.007992008
14       588 chr14 0.588411588
15       110 chr15 0.110889111
16       385 chr16 0.385614386
17        99 chr17 0.099900100
18        27 chr18 0.027972028
19        70 chr19 0.070929071
#permute_pvals
permute_pvals$p_val[permute_pvals$p_val$pval<0.05,]
   extrtimes chrom        pval
1          3  chr1 0.003996004
2         13  chr2 0.013986014
4          1  chr4 0.001998002
8          2  chr8 0.002997003
9         28  chr9 0.028971029
11         5 chr11 0.005994006
13         7 chr13 0.007992008
18        27 chr18 0.027972028
permute_pvals$plot
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

#p

Multiple testing correction

padj <-  cbind(permute_pvals$p_val, fdr = p.adjust(permute_pvals$p_val$pval,method = "fdr"))
padj
   extrtimes chrom        pval        fdr
1          3  chr1 0.003996004 0.02530803
2         13  chr2 0.013986014 0.04428904
3        546  chr3 0.546453546 0.61038961
4          1  chr4 0.001998002 0.02530803
5        389  chr5 0.389610390 0.49350649
6        311  chr6 0.311688312 0.45554446
7        143  chr7 0.143856144 0.22777223
8          2  chr8 0.002997003 0.02530803
9         28  chr9 0.028971029 0.06880619
10       610 chr10 0.610389610 0.61038961
11         5 chr11 0.005994006 0.02847153
12       549 chr12 0.549450549 0.61038961
13         7 chr13 0.007992008 0.03036963
14       588 chr14 0.588411588 0.61038961
15       110 chr15 0.110889111 0.19153574
16       385 chr16 0.385614386 0.49350649
17        99 chr17 0.099900100 0.18981019
18        27 chr18 0.027972028 0.06880619
19        70 chr19 0.070929071 0.14973915
padj[padj$fdr<0.055,]
   extrtimes chrom        pval        fdr
1          3  chr1 0.003996004 0.02530803
2         13  chr2 0.013986014 0.04428904
4          1  chr4 0.001998002 0.02530803
8          2  chr8 0.002997003 0.02530803
11         5 chr11 0.005994006 0.02847153
13         7 chr13 0.007992008 0.03036963

devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.1.2 (2021-11-01)
 os       Rocky Linux 8.5 (Green Obsidian)
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_AU.UTF-8
 ctype    en_AU.UTF-8
 tz       Australia/Melbourne
 date     2022-03-14
 pandoc   2.11.4 @ /usr/lib/rstudio-server/bin/pandoc/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version  date (UTC) lib source
 AnnotationDbi          1.56.2   2021-11-09 [1] Bioconductor
 AnnotationFilter       1.18.0   2021-10-26 [1] Bioconductor
 assertthat             0.2.1    2019-03-21 [1] CRAN (R 4.1.2)
 backports              1.4.1    2021-12-13 [1] CRAN (R 4.1.2)
 base64enc              0.1-3    2015-07-28 [1] CRAN (R 4.1.2)
 Biobase              * 2.54.0   2021-10-26 [1] Bioconductor
 BiocFileCache          2.2.1    2022-01-23 [1] Bioconductor
 BiocGenerics         * 0.40.0   2021-10-26 [1] Bioconductor
 BiocIO                 1.4.0    2021-10-26 [1] Bioconductor
 BiocParallel         * 1.28.3   2021-12-09 [1] Bioconductor
 biomaRt                2.50.3   2022-02-03 [1] Bioconductor
 Biostrings             2.62.0   2021-10-26 [1] Bioconductor
 biovizBase             1.42.0   2021-10-26 [1] Bioconductor
 bit                    4.0.4    2020-08-04 [1] CRAN (R 4.1.2)
 bit64                  4.0.5    2020-08-30 [1] CRAN (R 4.1.2)
 bitops                 1.0-7    2021-04-24 [1] CRAN (R 4.1.2)
 blob                   1.2.2    2021-07-23 [1] CRAN (R 4.1.2)
 brio                   1.1.3    2021-11-30 [1] CRAN (R 4.1.0)
 BSgenome               1.62.0   2021-10-26 [1] Bioconductor
 cachem                 1.0.6    2021-08-19 [1] CRAN (R 4.1.0)
 callr                  3.7.0    2021-04-20 [1] CRAN (R 4.1.2)
 cellranger             1.1.0    2016-07-27 [1] CRAN (R 4.1.2)
 checkmate              2.0.0    2020-02-06 [1] CRAN (R 4.1.0)
 circlize               0.4.13   2021-06-09 [1] CRAN (R 4.1.0)
 cli                    3.1.1    2022-01-20 [1] CRAN (R 4.1.2)
 cluster                2.1.2    2021-04-17 [2] CRAN (R 4.1.2)
 codetools              0.2-18   2020-11-04 [2] CRAN (R 4.1.2)
 colorspace             2.0-2    2021-06-24 [1] CRAN (R 4.1.2)
 comapr               * 0.99.43  2022-03-09 [1] Github (ruqianl/comapr@915d97c)
 crayon                 1.4.2    2021-10-29 [1] CRAN (R 4.1.2)
 curl                   4.3.2    2021-06-23 [1] CRAN (R 4.1.2)
 data.table             1.14.2   2021-09-27 [1] CRAN (R 4.1.2)
 DBI                    1.1.2    2021-12-20 [1] CRAN (R 4.1.2)
 dbplyr                 2.1.1    2021-04-06 [1] CRAN (R 4.1.2)
 DelayedArray           0.20.0   2021-10-26 [1] Bioconductor
 desc                   1.4.0    2021-09-28 [1] CRAN (R 4.1.0)
 devtools               2.4.3    2021-11-30 [1] CRAN (R 4.1.0)
 dichromat              2.0-0    2013-01-24 [1] CRAN (R 4.1.0)
 digest                 0.6.29   2021-12-01 [1] CRAN (R 4.1.2)
 dplyr                * 1.0.7    2021-06-18 [1] CRAN (R 4.1.2)
 ellipsis               0.3.2    2021-04-29 [1] CRAN (R 4.1.2)
 ensembldb              2.18.3   2022-01-13 [1] Bioconductor
 evaluate               0.14     2019-05-28 [1] CRAN (R 4.1.2)
 fansi                  1.0.2    2022-01-14 [1] CRAN (R 4.1.2)
 farver                 2.1.0    2021-02-28 [1] CRAN (R 4.1.2)
 fastmap                1.1.0    2021-01-25 [1] CRAN (R 4.1.2)
 filelock               1.0.2    2018-10-05 [1] CRAN (R 4.1.0)
 foreach                1.5.2    2022-02-02 [1] CRAN (R 4.1.0)
 foreign                0.8-81   2020-12-22 [2] CRAN (R 4.1.2)
 Formula                1.2-4    2020-10-16 [1] CRAN (R 4.1.0)
 fs                     1.5.2    2021-12-08 [1] CRAN (R 4.1.2)
 generics               0.1.1    2021-10-25 [1] CRAN (R 4.1.2)
 GenomeInfoDb         * 1.30.1   2022-01-30 [1] Bioconductor
 GenomeInfoDbData       1.2.7    2022-01-28 [1] Bioconductor
 GenomicAlignments      1.30.0   2021-10-26 [1] Bioconductor
 GenomicFeatures        1.46.4   2022-01-20 [1] Bioconductor
 GenomicRanges        * 1.46.1   2021-11-18 [1] Bioconductor
 ggplot2              * 3.3.5    2021-06-25 [1] CRAN (R 4.1.2)
 git2r                  0.29.0   2021-11-22 [1] CRAN (R 4.1.2)
 GlobalOptions          0.1.2    2020-06-10 [1] CRAN (R 4.1.0)
 glue                   1.6.1    2022-01-22 [1] CRAN (R 4.1.2)
 gridExtra            * 2.3      2017-09-09 [1] CRAN (R 4.1.0)
 gtable                 0.3.0    2019-03-25 [1] CRAN (R 4.1.2)
 Gviz                   1.38.3   2022-01-23 [1] Bioconductor
 highr                  0.9      2021-04-16 [1] CRAN (R 4.1.2)
 Hmisc                  4.6-0    2021-10-07 [1] CRAN (R 4.1.0)
 hms                    1.1.1    2021-09-26 [1] CRAN (R 4.1.2)
 htmlTable              2.4.0    2022-01-04 [1] CRAN (R 4.1.0)
 htmltools              0.5.2    2021-08-25 [1] CRAN (R 4.1.2)
 htmlwidgets            1.5.4    2021-09-08 [1] CRAN (R 4.1.0)
 httpuv                 1.6.5    2022-01-05 [1] CRAN (R 4.1.2)
 httr                   1.4.2    2020-07-20 [1] CRAN (R 4.1.2)
 IRanges              * 2.28.0   2021-10-26 [1] Bioconductor
 iterators              1.0.14   2022-02-05 [1] CRAN (R 4.1.0)
 jpeg                   0.1-9    2021-07-24 [1] CRAN (R 4.1.0)
 jquerylib              0.1.4    2021-04-26 [1] CRAN (R 4.1.2)
 jsonlite               1.7.3    2022-01-17 [1] CRAN (R 4.1.2)
 KEGGREST               1.34.0   2021-10-26 [1] Bioconductor
 knitr                  1.37     2021-12-16 [1] CRAN (R 4.1.0)
 labeling               0.4.2    2020-10-20 [1] CRAN (R 4.1.2)
 later                  1.3.0    2021-08-18 [1] CRAN (R 4.1.0)
 lattice                0.20-45  2021-09-22 [2] CRAN (R 4.1.2)
 latticeExtra           0.6-29   2019-12-19 [1] CRAN (R 4.1.0)
 lazyeval               0.2.2    2019-03-15 [1] CRAN (R 4.1.0)
 lifecycle              1.0.1    2021-09-24 [1] CRAN (R 4.1.2)
 magrittr               2.0.2    2022-01-26 [1] CRAN (R 4.1.2)
 Matrix                 1.4-0    2021-12-08 [1] CRAN (R 4.1.2)
 MatrixGenerics       * 1.6.0    2021-10-26 [1] Bioconductor
 matrixStats          * 0.61.0   2021-09-17 [1] CRAN (R 4.1.2)
 memoise                2.0.1    2021-11-26 [1] CRAN (R 4.1.0)
 munsell                0.5.0    2018-06-12 [1] CRAN (R 4.1.2)
 nnet                   7.3-16   2021-05-03 [2] CRAN (R 4.1.2)
 pillar                 1.6.5    2022-01-25 [1] CRAN (R 4.1.2)
 pkgbuild               1.3.1    2021-12-20 [1] CRAN (R 4.1.0)
 pkgconfig              2.0.3    2019-09-22 [1] CRAN (R 4.1.2)
 pkgload                1.2.4    2021-11-30 [1] CRAN (R 4.1.0)
 plotly                 4.10.0   2021-10-09 [1] CRAN (R 4.1.0)
 plyr                   1.8.6    2020-03-03 [1] CRAN (R 4.1.0)
 png                    0.1-7    2013-12-03 [1] CRAN (R 4.1.0)
 prettyunits            1.1.1    2020-01-24 [1] CRAN (R 4.1.2)
 processx               3.5.2    2021-04-30 [1] CRAN (R 4.1.2)
 progress               1.2.2    2019-05-16 [1] CRAN (R 4.1.2)
 promises               1.2.0.1  2021-02-11 [1] CRAN (R 4.1.0)
 ProtGenerics           1.26.0   2021-10-26 [1] Bioconductor
 ps                     1.6.0    2021-02-28 [1] CRAN (R 4.1.2)
 purrr                  0.3.4    2020-04-17 [1] CRAN (R 4.1.2)
 R6                     2.5.1    2021-08-19 [1] CRAN (R 4.1.2)
 rappdirs               0.3.3    2021-01-31 [1] CRAN (R 4.1.2)
 RColorBrewer           1.1-2    2014-12-07 [1] CRAN (R 4.1.2)
 Rcpp                   1.0.8    2022-01-13 [1] CRAN (R 4.1.2)
 RCurl                  1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)
 readxl               * 1.3.1    2019-03-13 [1] CRAN (R 4.1.2)
 remotes                2.4.2    2021-11-30 [1] CRAN (R 4.1.0)
 reshape2               1.4.4    2020-04-09 [1] CRAN (R 4.1.0)
 restfulr               0.0.13   2017-08-06 [1] CRAN (R 4.1.0)
 rjson                  0.2.21   2022-01-09 [1] CRAN (R 4.1.0)
 rlang                  1.0.0    2022-01-26 [1] CRAN (R 4.1.2)
 rmarkdown              2.11     2021-09-14 [1] CRAN (R 4.1.2)
 rpart                  4.1-15   2019-04-12 [2] CRAN (R 4.1.2)
 rprojroot              2.0.2    2020-11-15 [1] CRAN (R 4.1.0)
 Rsamtools              2.10.0   2021-10-26 [1] Bioconductor
 RSQLite                2.2.9    2021-12-06 [1] CRAN (R 4.1.0)
 rstudioapi             0.13     2020-11-12 [1] CRAN (R 4.1.2)
 rtracklayer            1.54.0   2021-10-26 [1] Bioconductor
 S4Vectors            * 0.32.3   2021-11-21 [1] Bioconductor
 scales                 1.1.1    2020-05-11 [1] CRAN (R 4.1.2)
 sessioninfo            1.2.2    2021-12-06 [1] CRAN (R 4.1.0)
 shape                  1.4.6    2021-05-19 [1] CRAN (R 4.1.0)
 statmod              * 1.4.36   2021-05-10 [1] CRAN (R 4.1.2)
 stringi                1.7.6    2021-11-29 [1] CRAN (R 4.1.0)
 stringr                1.4.0    2019-02-10 [1] CRAN (R 4.1.0)
 SummarizedExperiment * 1.24.0   2021-10-26 [1] Bioconductor
 survival               3.2-13   2021-08-24 [2] CRAN (R 4.1.2)
 testthat               3.1.2    2022-01-20 [1] CRAN (R 4.1.0)
 tibble                 3.1.6    2021-11-07 [1] CRAN (R 4.1.2)
 tidyr                  1.2.0    2022-02-01 [1] CRAN (R 4.1.0)
 tidyselect             1.1.1    2021-04-30 [1] CRAN (R 4.1.2)
 usethis                2.1.5    2021-12-09 [1] CRAN (R 4.1.0)
 utf8                   1.2.2    2021-07-24 [1] CRAN (R 4.1.2)
 VariantAnnotation      1.40.0   2021-10-26 [1] Bioconductor
 vctrs                  0.3.8    2021-04-29 [1] CRAN (R 4.1.2)
 viridisLite            0.4.0    2021-04-13 [1] CRAN (R 4.1.2)
 withr                  2.4.3    2021-11-30 [1] CRAN (R 4.1.2)
 workflowr              1.7.0    2021-12-21 [1] CRAN (R 4.1.2)
 xfun                   0.29     2021-12-14 [1] CRAN (R 4.1.2)
 XML                    3.99-0.8 2021-09-17 [1] CRAN (R 4.1.0)
 xml2                   1.3.3    2021-11-30 [1] CRAN (R 4.1.0)
 XVector                0.34.0   2021-10-26 [1] Bioconductor
 yaml                   2.2.2    2022-01-25 [1] CRAN (R 4.1.2)
 zlibbioc               1.40.0   2021-10-26 [1] Bioconductor

 [1] /mnt/beegfs/mccarthy/backed_up/general/rlyu/Software/Rlibs/4.1
 [2] /opt/R/4.1.2/lib/R/library

──────────────────────────────────────────────────────────────────────────────