Last updated: 2022-03-14
Checks: 5 1
Knit directory: yeln_2019_spermtyping/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190102)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Tracking code development and connecting the code version to the results is critical for reproducibility. To start using Git, open the Terminal and type git init
in your project directory.
This project is not being versioned with Git. To obtain the full reproducibility benefits of using workflowr, please see ?wflow_start
.
<- readRDS(file = "output/outputR/analysisRDS/all_rse_count_07-20.rds")
bc1f1_samples ::register(MulticoreParam(workers = 12)) BiocParallel
<- calGeneticDist(bc1f1_samples,group_by = "sampleGroup" )
bc1f1_samples_dist <- calGeneticDist(bc1f1_samples[,bc1f1_samples$sampleGroup %in%
bc1f1_samples_dist_male c("Male_HET","Male_WT","Male_KO")],
group_by = "sampleGroup" )
<- calGeneticDist(bc1f1_samples[,bc1f1_samples$sampleGroup %in%
bc1f1_samples_dist_female c("Female_HET","Female_WT","Female_KO")],group_by = "sampleGroup")
<- colSums(rowData(bc1f1_samples_dist_male)[,2][,c("Male_WT","Male_HET")])) (observed_male_wt_het_diff
Male_WT Male_HET
1255.786 1242.336
<- colSums(rowData(bc1f1_samples_dist_male)[,2][,c("Male_KO","Male_WT")])) (observed_male_ko_wt_diff
Male_KO Male_WT
1339.082 1255.786
colSums(rowData(bc1f1_samples_dist_female)[,2])) (
Female_KO Female_WT Female_HET
1438.272 1406.645 1364.624
colSums(rowData(bc1f1_samples_dist_male)[,2])) (
Male_KO Male_WT Male_HET
1339.082 1255.786 1242.336
<- permuteDist(bc1f1_samples_dist_male[,bc1f1_samples_dist_male$sampleGroup %in% c("Male_WT","Male_HET")],
permResult_male_wt_het group_by = "sampleGroup",B = 1000)
$observed_diff permResult_male_wt_het
[1] 13.45047
<- permp(sum(permResult_male_wt_het$permutes >= permResult_male_wt_het$observed_diff),
permute_pvals_male_wt_het nperm = 1000,n1 = permResult_male_wt_het$nSample[1],
$nSample[2],
permResult_male_wt_hettwosided = FALSE)
permute_pvals_male_wt_het
[1] 0.4385614
ggplot()+geom_histogram(mapping = aes(x = permResult_male_wt_het$permutes))+
theme_bw(base_size = 18)+
geom_vline(xintercept = permResult_male_wt_het$observed_diff)+
ggtitle(paste0("BC1F1 male \n(Fancm -/ versus Fancm +/-), p: ",
round(permute_pvals_male_wt_het,2)))+
xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
<- permuteDist(bc1f1_samples_dist_male[,bc1f1_samples_dist_male$sampleGroup %in% c("Male_KO","Male_WT")],
permResult_male_ko_wt group_by = "sampleGroup",B = 1000)
<- permp(sum(permResult_male_ko_wt$permutes >= permResult_male_ko_wt$observed_diff),
permute_pvals_male_ko_wt nperm = 1000,n1 = permResult_male_ko_wt$nSample[1],
$nSample[2],twosided = FALSE)
permResult_male_ko_wt permute_pvals_male_ko_wt
[1] 0.08191808
ggplot()+geom_histogram(mapping = aes(x = permResult_male_ko_wt$permutes))+theme_bw(base_size = 18)+geom_vline(xintercept = permResult_male_ko_wt$observed_diff)+ggtitle(paste0("BC1F1 male \n(Fancm -/- versus Fancm +/+), p: ", round(permute_pvals_male_ko_wt,2)))+xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
<- permuteDist(bc1f1_samples_dist_male[,bc1f1_samples_dist_male$sampleGroup %in% c("Male_KO","Male_HET")],
permResult_male_ko_het group_by = "sampleGroup",B = 1000)
<- permp(sum(permResult_male_ko_het$permutes >= permResult_male_ko_het$observed_diff),
permute_pvals_male_ko_het nperm = 1000,n1 = permResult_male_ko_het$nSample[1],
$nSample[2],twosided = FALSE)
permResult_male_ko_het permute_pvals_male_ko_het
[1] 0.04095904
ggplot()+geom_histogram(mapping = aes(x = permResult_male_ko_het$permutes))+theme_bw(base_size = 18)+geom_vline(xintercept = permResult_male_ko_het$observed_diff)+ggtitle(paste0("BC1F1 male \n(Fancm -/- versus Fancm +/-), p: ", round(permute_pvals_male_ko_het,2)))+xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
$sampleType <- plyr::mapvalues(bc1f1_samples_dist_male$sampleGroup,
bc1f1_samples_dist_malefrom = c("Male_KO","Male_WT","Male_HET"),
to = c("Male_KO","Male_nKO","Male_nKO"))
<- permuteDist(bc1f1_samples_dist_male,
permResult_male_ko_nko group_by = "sampleType",B = 1000)
<- permp(sum(permResult_male_ko_nko$permutes >= permResult_male_ko_nko$observed_diff),
permute_pvals_male_ko_nko nperm = 1000,n1 = permResult_male_ko_nko$nSample[1],
$nSample[2],twosided = FALSE)
permResult_male_ko_nko permute_pvals_male_ko_nko
[1] 0.03496503
ggplot()+geom_histogram(mapping = aes(x = permResult_male_ko_nko$permutes))+
theme_bw(base_size = 18)+
geom_vline(xintercept = permResult_male_ko_nko$observed_diff)+
ggtitle(paste0("BC1F1 male \n(Fancm -/- versus Fancm +/*), p: ", round(permute_pvals_male_ko_nko,2)))+
xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## PCR method
<- readRDS(file ="output/outputR/analysisRDS/all_rse_pcr_map.rds")
all_rse_pcr_map $sampleGroup <- plyr::mapvalues(all_rse_pcr_map$sampleType,
all_rse_pcr_mapfrom = c("Fancm-/-", "Fancm+/+"),
to = c("Mutant","Wildtype"))
suppressWarnings(permResult_pcr_ko_wt <- permuteDist(all_rse_pcr_map,group_by = "sampleGroup",B=3000))
<- permp(sum(permResult_pcr_ko_wt$permutes >= permResult_pcr_ko_wt$observed_diff, na.rm = T),
permute_pvals_pcr_ko_wt nperm = sum(!is.na(permResult_pcr_ko_wt$permutes)),n1 = permResult_pcr_ko_wt$nSample[1],
$nSample[2],twosided = FALSE) permResult_pcr_ko_wt
ggplot()+geom_histogram(mapping = aes(x = permResult_pcr_ko_wt$permutes))+theme_bw(base_size = 18)+geom_vline(xintercept = permResult_pcr_ko_wt$observed_diff)+ggtitle(paste0("BC1F1 PCR puos male \n(Fancm -/- versus Fancm +/+), p: ", round(permute_pvals_pcr_ko_wt,3)))+xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Warning: Removed 38 rows containing non-finite values (stat_bin).
$sampleType <- plyr::mapvalues(bc1f1_samples_dist_female$sampleGroup,
bc1f1_samples_dist_femalefrom = c("Female_KO","Female_WT","Female_HET"),
to = c("Female_KO","Female_nKO","Female_nKO"))
<- permuteDist(bc1f1_samples_dist_female,
permResult_female_ko_nko group_by = "sampleType",B = 1000)
<- calGeneticDist(bc1f1_samples_dist_female,group_by = "sampleType")
bulk_bc1f1_female_ko_nko colSums(rowData(bulk_bc1f1_female_ko_nko)[,2])
Female_KO Female_nKO
1438.272 1385.232
<- permp(sum(permResult_female_ko_nko$permutes >= permResult_female_ko_nko$observed_diff),
permute_pvals_female_ko_nko nperm = 1000,n1 = permResult_female_ko_nko$nSample[1],
$nSample[2],twosided = FALSE)
permResult_female_ko_nko permute_pvals_female_ko_nko
[1] 0.1468531
ggplot()+geom_histogram(mapping = aes(x = permResult_female_ko_nko$permutes))+theme_bw(base_size = 18)+geom_vline(xintercept = permResult_female_ko_nko$observed_diff)+ggtitle(paste0("BC1F1 female \n(Fancm +/+ versus Fancm +/*), p: ", round(permute_pvals_female_ko_nko,2)))+xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
<- readRDS(file = "~/Projects/rejy_2020_single-sperm-co-calling/output/outputR/analysisRDS/countsAll-settings4.3-scCNV-CO-counts_07-mar-2022.rds") scCNV
scCNV by Fancm genotype
<- c("mutant","mutant","wildtype","mutant",
x "wildtype","wildtype")
<- c("Fancm-/-","Fancm-/-","Fancm+/+","Fancm-/-",
xx "Fancm+/+","Fancm+/+")
$sampleType <- plyr::mapvalues(scCNV$sampleGroup,from = c("WC_522",
scCNV"WC_526",
"WC_CNV_42",
"WC_CNV_43",
"WC_CNV_44",
"WC_CNV_53"),
to =x)
<- calGeneticDist(scCNV,group_by = "sampleType")
scCNV_dist_type
colSums(as.matrix(rowData(scCNV_dist_type)$kosambi))
mutant wildtype
1387.336 1227.412
<- permuteDist(scCNV,
permResult_sccnv_ko_wt group_by = "sampleType",B = 1000)
<- permp(sum(permResult_sccnv_ko_wt$permutes >= permResult_sccnv_ko_wt$observed_diff),
permute_pvals_scCNV_ko_wt nperm = 1000,n1 = permResult_sccnv_ko_wt$nSample[1],
$nSample[2],twosided = FALSE)
permResult_sccnv_ko_wt permute_pvals_scCNV_ko_wt
[1] 0.000999001
ggplot()+geom_histogram(mapping = aes(x = permResult_sccnv_ko_wt$permutes))+theme_bw(base_size = 18)+geom_vline(xintercept = permResult_sccnv_ko_wt$observed_diff)+ggtitle(paste0("F1 single sperm sequencing \n(Fancm +/+ versus Fancm +/-), p: ", round(permute_pvals_scCNV_ko_wt,3)))+xlab("Differences of total genetic distances")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
<- function(co_count, B = 1000,
permuteSampleType permuteCol = "sampleType"){
<- table(colData(co_count)[,permuteCol])[1]
len_1 <- co_count
permutedCoCount
<- bptry(bplapply(1:B, function(x){
bbl
<- sample(seq(ncol(permutedCoCount)),len_1)
type1Idx <- setdiff(seq(ncol(permutedCoCount)),type1Idx )
type2Idx stopifnot(length(type1Idx)>0)
stopifnot(length(type2Idx)>0)
# sink(NULL, type = "message")
# message("type1Idx",paste0(type1Idx,collapse = ","),"\n")
# message("type2Idx",paste0(type2Idx,collapse = ","),"\n")
#
#Sys.sleep(3)
$sampleType[type1Idx] <- names(table(permutedCoCount$sampleType))[1]
permutedCoCount$sampleType[type2Idx] <- names(table(permutedCoCount$sampleType))[2]
permutedCoCount
<- calGeneticDist(permutedCoCount,group_by = permuteCol)
permutedCoCount_dist_bin_dist mcols(permutedCoCount_dist_bin_dist)[,2]
bplist_error=identity)
}),
<- calGeneticDist(co_count,group_by = permuteCol)
observed_chr_dist_diff <- bplapply(paste0("chr",1:19), function(chr){
observed_chr_dist_diff <- observed_chr_dist_diff[seqnames(observed_chr_dist_diff) ==chr,]
tmp c("chrom"=chr,colSums(rowData(tmp)[,2]),
"diff" = (colSums(rowData(tmp)[,2])[1] - colSums(rowData(tmp)[,2])[2]) )})
<- do.call(rbind,observed_chr_dist_diff)
observed_dist_bin_diff
<- sapply(bbl,function(x){
mt_scnv_permute lapply(paste0("chr",1:19), function(chr){
<- x[as.character(seqnames(co_count))==chr,]
tmp c("chrom"= chr,colSums(tmp),
"diff" = (colSums(tmp)["mutant"] -colSums(tmp)["wildtype"]))})
})<- data.frame(do.call(rbind,mt_scnv_permute))
permute_statistic colnames(permute_statistic) <- c("chrom","wildtype","mutant","diff")
$diff <- as.numeric(permute_statistic$diff)
permute_statistic<- data.frame(observed_dist_bin_diff)
observed_dist_bin_diff $diff.mutant <- as.numeric(observed_dist_bin_diff$diff.mutant)
observed_dist_bin_diff<- permute_statistic %>% dplyr::left_join(observed_dist_bin_diff,by ="chrom") %>%
p mutate(diff.mutant = as.numeric(diff.mutant)) %>% ggplot()+ geom_histogram(mapping = aes(x = diff)) +
geom_vline(mapping = aes(xintercept=diff.mutant)) +facet_wrap(.~chrom)
<- lapply(paste0("chr",1:19), function(chr){
permute_statistic_agg %>% filter(chrom ==chr) %>%
permute_statistic summarise(extrtimes = sum(diff >= (observed_dist_bin_diff$diff.mutant[observed_dist_bin_diff$chrom==chr])),
chrom = chr)
})<- do.call(rbind, permute_statistic_agg)
permute_statistic_agg <- permp(permute_statistic_agg[,1],nperm = B,n1 =len_1,
permute_pvals n2 = (ncol(co_count)-len_1),twosided = FALSE)
<- cbind(permute_statistic_agg,pval = permute_pvals)
temp_gr
list(p_val = temp_gr,
plot = p)
}
<- "sampleType"
permuteCol <- permuteSampleType(scCNV, B=1000)
permute_pvals $p_val permute_pvals
extrtimes chrom pval
1 3 chr1 0.003996004
2 13 chr2 0.013986014
3 546 chr3 0.546453546
4 1 chr4 0.001998002
5 389 chr5 0.389610390
6 311 chr6 0.311688312
7 143 chr7 0.143856144
8 2 chr8 0.002997003
9 28 chr9 0.028971029
10 610 chr10 0.610389610
11 5 chr11 0.005994006
12 549 chr12 0.549450549
13 7 chr13 0.007992008
14 588 chr14 0.588411588
15 110 chr15 0.110889111
16 385 chr16 0.385614386
17 99 chr17 0.099900100
18 27 chr18 0.027972028
19 70 chr19 0.070929071
#permute_pvals
$p_val[permute_pvals$p_val$pval<0.05,] permute_pvals
extrtimes chrom pval
1 3 chr1 0.003996004
2 13 chr2 0.013986014
4 1 chr4 0.001998002
8 2 chr8 0.002997003
9 28 chr9 0.028971029
11 5 chr11 0.005994006
13 7 chr13 0.007992008
18 27 chr18 0.027972028
$plot permute_pvals
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#p
<- cbind(permute_pvals$p_val, fdr = p.adjust(permute_pvals$p_val$pval,method = "fdr"))
padj padj
extrtimes chrom pval fdr
1 3 chr1 0.003996004 0.02530803
2 13 chr2 0.013986014 0.04428904
3 546 chr3 0.546453546 0.61038961
4 1 chr4 0.001998002 0.02530803
5 389 chr5 0.389610390 0.49350649
6 311 chr6 0.311688312 0.45554446
7 143 chr7 0.143856144 0.22777223
8 2 chr8 0.002997003 0.02530803
9 28 chr9 0.028971029 0.06880619
10 610 chr10 0.610389610 0.61038961
11 5 chr11 0.005994006 0.02847153
12 549 chr12 0.549450549 0.61038961
13 7 chr13 0.007992008 0.03036963
14 588 chr14 0.588411588 0.61038961
15 110 chr15 0.110889111 0.19153574
16 385 chr16 0.385614386 0.49350649
17 99 chr17 0.099900100 0.18981019
18 27 chr18 0.027972028 0.06880619
19 70 chr19 0.070929071 0.14973915
$fdr<0.055,] padj[padj
extrtimes chrom pval fdr
1 3 chr1 0.003996004 0.02530803
2 13 chr2 0.013986014 0.04428904
4 1 chr4 0.001998002 0.02530803
8 2 chr8 0.002997003 0.02530803
11 5 chr11 0.005994006 0.02847153
13 7 chr13 0.007992008 0.03036963
::session_info() devtools
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.1.2 (2021-11-01)
os Rocky Linux 8.5 (Green Obsidian)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Melbourne
date 2022-03-14
pandoc 2.11.4 @ /usr/lib/rstudio-server/bin/pandoc/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
AnnotationDbi 1.56.2 2021-11-09 [1] Bioconductor
AnnotationFilter 1.18.0 2021-10-26 [1] Bioconductor
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.1.2)
backports 1.4.1 2021-12-13 [1] CRAN (R 4.1.2)
base64enc 0.1-3 2015-07-28 [1] CRAN (R 4.1.2)
Biobase * 2.54.0 2021-10-26 [1] Bioconductor
BiocFileCache 2.2.1 2022-01-23 [1] Bioconductor
BiocGenerics * 0.40.0 2021-10-26 [1] Bioconductor
BiocIO 1.4.0 2021-10-26 [1] Bioconductor
BiocParallel * 1.28.3 2021-12-09 [1] Bioconductor
biomaRt 2.50.3 2022-02-03 [1] Bioconductor
Biostrings 2.62.0 2021-10-26 [1] Bioconductor
biovizBase 1.42.0 2021-10-26 [1] Bioconductor
bit 4.0.4 2020-08-04 [1] CRAN (R 4.1.2)
bit64 4.0.5 2020-08-30 [1] CRAN (R 4.1.2)
bitops 1.0-7 2021-04-24 [1] CRAN (R 4.1.2)
blob 1.2.2 2021-07-23 [1] CRAN (R 4.1.2)
brio 1.1.3 2021-11-30 [1] CRAN (R 4.1.0)
BSgenome 1.62.0 2021-10-26 [1] Bioconductor
cachem 1.0.6 2021-08-19 [1] CRAN (R 4.1.0)
callr 3.7.0 2021-04-20 [1] CRAN (R 4.1.2)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.1.2)
checkmate 2.0.0 2020-02-06 [1] CRAN (R 4.1.0)
circlize 0.4.13 2021-06-09 [1] CRAN (R 4.1.0)
cli 3.1.1 2022-01-20 [1] CRAN (R 4.1.2)
cluster 2.1.2 2021-04-17 [2] CRAN (R 4.1.2)
codetools 0.2-18 2020-11-04 [2] CRAN (R 4.1.2)
colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.2)
comapr * 0.99.43 2022-03-09 [1] Github (ruqianl/comapr@915d97c)
crayon 1.4.2 2021-10-29 [1] CRAN (R 4.1.2)
curl 4.3.2 2021-06-23 [1] CRAN (R 4.1.2)
data.table 1.14.2 2021-09-27 [1] CRAN (R 4.1.2)
DBI 1.1.2 2021-12-20 [1] CRAN (R 4.1.2)
dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.1.2)
DelayedArray 0.20.0 2021-10-26 [1] Bioconductor
desc 1.4.0 2021-09-28 [1] CRAN (R 4.1.0)
devtools 2.4.3 2021-11-30 [1] CRAN (R 4.1.0)
dichromat 2.0-0 2013-01-24 [1] CRAN (R 4.1.0)
digest 0.6.29 2021-12-01 [1] CRAN (R 4.1.2)
dplyr * 1.0.7 2021-06-18 [1] CRAN (R 4.1.2)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.1.2)
ensembldb 2.18.3 2022-01-13 [1] Bioconductor
evaluate 0.14 2019-05-28 [1] CRAN (R 4.1.2)
fansi 1.0.2 2022-01-14 [1] CRAN (R 4.1.2)
farver 2.1.0 2021-02-28 [1] CRAN (R 4.1.2)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.2)
filelock 1.0.2 2018-10-05 [1] CRAN (R 4.1.0)
foreach 1.5.2 2022-02-02 [1] CRAN (R 4.1.0)
foreign 0.8-81 2020-12-22 [2] CRAN (R 4.1.2)
Formula 1.2-4 2020-10-16 [1] CRAN (R 4.1.0)
fs 1.5.2 2021-12-08 [1] CRAN (R 4.1.2)
generics 0.1.1 2021-10-25 [1] CRAN (R 4.1.2)
GenomeInfoDb * 1.30.1 2022-01-30 [1] Bioconductor
GenomeInfoDbData 1.2.7 2022-01-28 [1] Bioconductor
GenomicAlignments 1.30.0 2021-10-26 [1] Bioconductor
GenomicFeatures 1.46.4 2022-01-20 [1] Bioconductor
GenomicRanges * 1.46.1 2021-11-18 [1] Bioconductor
ggplot2 * 3.3.5 2021-06-25 [1] CRAN (R 4.1.2)
git2r 0.29.0 2021-11-22 [1] CRAN (R 4.1.2)
GlobalOptions 0.1.2 2020-06-10 [1] CRAN (R 4.1.0)
glue 1.6.1 2022-01-22 [1] CRAN (R 4.1.2)
gridExtra * 2.3 2017-09-09 [1] CRAN (R 4.1.0)
gtable 0.3.0 2019-03-25 [1] CRAN (R 4.1.2)
Gviz 1.38.3 2022-01-23 [1] Bioconductor
highr 0.9 2021-04-16 [1] CRAN (R 4.1.2)
Hmisc 4.6-0 2021-10-07 [1] CRAN (R 4.1.0)
hms 1.1.1 2021-09-26 [1] CRAN (R 4.1.2)
htmlTable 2.4.0 2022-01-04 [1] CRAN (R 4.1.0)
htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.2)
htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.1.0)
httpuv 1.6.5 2022-01-05 [1] CRAN (R 4.1.2)
httr 1.4.2 2020-07-20 [1] CRAN (R 4.1.2)
IRanges * 2.28.0 2021-10-26 [1] Bioconductor
iterators 1.0.14 2022-02-05 [1] CRAN (R 4.1.0)
jpeg 0.1-9 2021-07-24 [1] CRAN (R 4.1.0)
jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.1.2)
jsonlite 1.7.3 2022-01-17 [1] CRAN (R 4.1.2)
KEGGREST 1.34.0 2021-10-26 [1] Bioconductor
knitr 1.37 2021-12-16 [1] CRAN (R 4.1.0)
labeling 0.4.2 2020-10-20 [1] CRAN (R 4.1.2)
later 1.3.0 2021-08-18 [1] CRAN (R 4.1.0)
lattice 0.20-45 2021-09-22 [2] CRAN (R 4.1.2)
latticeExtra 0.6-29 2019-12-19 [1] CRAN (R 4.1.0)
lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.1.0)
lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.2)
magrittr 2.0.2 2022-01-26 [1] CRAN (R 4.1.2)
Matrix 1.4-0 2021-12-08 [1] CRAN (R 4.1.2)
MatrixGenerics * 1.6.0 2021-10-26 [1] Bioconductor
matrixStats * 0.61.0 2021-09-17 [1] CRAN (R 4.1.2)
memoise 2.0.1 2021-11-26 [1] CRAN (R 4.1.0)
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.2)
nnet 7.3-16 2021-05-03 [2] CRAN (R 4.1.2)
pillar 1.6.5 2022-01-25 [1] CRAN (R 4.1.2)
pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.1.0)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.2)
pkgload 1.2.4 2021-11-30 [1] CRAN (R 4.1.0)
plotly 4.10.0 2021-10-09 [1] CRAN (R 4.1.0)
plyr 1.8.6 2020-03-03 [1] CRAN (R 4.1.0)
png 0.1-7 2013-12-03 [1] CRAN (R 4.1.0)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.1.2)
processx 3.5.2 2021-04-30 [1] CRAN (R 4.1.2)
progress 1.2.2 2019-05-16 [1] CRAN (R 4.1.2)
promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.1.0)
ProtGenerics 1.26.0 2021-10-26 [1] Bioconductor
ps 1.6.0 2021-02-28 [1] CRAN (R 4.1.2)
purrr 0.3.4 2020-04-17 [1] CRAN (R 4.1.2)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.2)
rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.1.2)
RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 4.1.2)
Rcpp 1.0.8 2022-01-13 [1] CRAN (R 4.1.2)
RCurl 1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)
readxl * 1.3.1 2019-03-13 [1] CRAN (R 4.1.2)
remotes 2.4.2 2021-11-30 [1] CRAN (R 4.1.0)
reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.1.0)
restfulr 0.0.13 2017-08-06 [1] CRAN (R 4.1.0)
rjson 0.2.21 2022-01-09 [1] CRAN (R 4.1.0)
rlang 1.0.0 2022-01-26 [1] CRAN (R 4.1.2)
rmarkdown 2.11 2021-09-14 [1] CRAN (R 4.1.2)
rpart 4.1-15 2019-04-12 [2] CRAN (R 4.1.2)
rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.1.0)
Rsamtools 2.10.0 2021-10-26 [1] Bioconductor
RSQLite 2.2.9 2021-12-06 [1] CRAN (R 4.1.0)
rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.1.2)
rtracklayer 1.54.0 2021-10-26 [1] Bioconductor
S4Vectors * 0.32.3 2021-11-21 [1] Bioconductor
scales 1.1.1 2020-05-11 [1] CRAN (R 4.1.2)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.1.0)
shape 1.4.6 2021-05-19 [1] CRAN (R 4.1.0)
statmod * 1.4.36 2021-05-10 [1] CRAN (R 4.1.2)
stringi 1.7.6 2021-11-29 [1] CRAN (R 4.1.0)
stringr 1.4.0 2019-02-10 [1] CRAN (R 4.1.0)
SummarizedExperiment * 1.24.0 2021-10-26 [1] Bioconductor
survival 3.2-13 2021-08-24 [2] CRAN (R 4.1.2)
testthat 3.1.2 2022-01-20 [1] CRAN (R 4.1.0)
tibble 3.1.6 2021-11-07 [1] CRAN (R 4.1.2)
tidyr 1.2.0 2022-02-01 [1] CRAN (R 4.1.0)
tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.1.2)
usethis 2.1.5 2021-12-09 [1] CRAN (R 4.1.0)
utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.2)
VariantAnnotation 1.40.0 2021-10-26 [1] Bioconductor
vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.1.2)
viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.1.2)
withr 2.4.3 2021-11-30 [1] CRAN (R 4.1.2)
workflowr 1.7.0 2021-12-21 [1] CRAN (R 4.1.2)
xfun 0.29 2021-12-14 [1] CRAN (R 4.1.2)
XML 3.99-0.8 2021-09-17 [1] CRAN (R 4.1.0)
xml2 1.3.3 2021-11-30 [1] CRAN (R 4.1.0)
XVector 0.34.0 2021-10-26 [1] Bioconductor
yaml 2.2.2 2022-01-25 [1] CRAN (R 4.1.2)
zlibbioc 1.40.0 2021-10-26 [1] Bioconductor
[1] /mnt/beegfs/mccarthy/backed_up/general/rlyu/Software/Rlibs/4.1
[2] /opt/R/4.1.2/lib/R/library
──────────────────────────────────────────────────────────────────────────────