Last updated: 2022-02-28

Checks: 5 2

Knit directory: BAUH_2020_MND-single-cell/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/mnt/beegfs/mccarthy/backed_up/general/cazodi/Projects/BAUH_2020_MND-single-cell/output/pilot3_Lenti/01_fasta/ ../output/pilot3_Lenti/01_fasta
/mnt/beegfs/mccarthy/backed_up/general/cazodi/Projects/BAUH_2020_MND-single-cell/output/pilot3_Lenti/02_blast/ ../output/pilot3_Lenti/02_blast
/mnt/beegfs/mccarthy/backed_up/general/cazodi/Projects/BAUH_2020_MND-single-cell/output/pilot3_Lenti/03_keys/ ../output/pilot3_Lenti/03_keys

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 409be72. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .cache/
    Ignored:    .config/
    Ignored:    .snakemake/
    Ignored:    BAUH_2020_MND-single-cell.Rproj
    Ignored:    GRCh38_turboGFP-RFP_reference/
    Ignored:    Homo_sapiens.GRCh38.turboGFP/
    Ignored:    Rplots.pdf
    Ignored:    data/1-s2.0-S0002929720300781-main.pdf
    Ignored:    data/2103.11251.pdf
    Ignored:    data/3M-february-2018.txt
    Ignored:    data/737K-august-2016.txt
    Ignored:    data/STAR_index/
    Ignored:    data/STAR_output/
    Ignored:    data/genome1K.phase3.SNP_AF5e2.chr1toX.hg38.log
    Ignored:    data/genome1K.phase3.SNP_AF5e2.chr1toX.hg38.recode.sort.vcf.gz
    Ignored:    data/genome1K.phase3.SNP_AF5e2.chr1toX.hg38.recode.sort.vcf.gz.csi
    Ignored:    data/genome1K.phase3.SNP_AF5e2.chr1toX.hg38.recode.vcf.gz
    Ignored:    data/genome1K.phase3.SNP_AF5e2.chr1toX.hg38.sort.vcf.gz
    Ignored:    data/genome1K.phase3.SNP_AF5e2.chr1toX.hg38.sort.vcf.gz.csi
    Ignored:    data/genome1K.phase3.SNP_AF5e2.chr1toX.hg38.vcf.gz
    Ignored:    data/genome1k.chr22.log
    Ignored:    data/genome1k.chr22.recode.vcf
    Ignored:    data/pilot3_aggr-experiments.csv
    Ignored:    data/pilot3_donors.txt
    Ignored:    data/s41588-018-0268-8.pdf
    Ignored:    data/tr2g_hs.tsv
    Ignored:    logs/
    Ignored:    output/2021-04-27_pilot2_nCells-per-donor.pdf
    Ignored:    output/2021-08-03_pilot2_nCells-per-donor.pdf
    Ignored:    output/CB-scRNAv31-GEX-lib01_QC_metadata.txt
    Ignored:    output/CB-scRNAv31-GEX-lib02_QC_metadata.txt
    Ignored:    output/pilot1_starsoloED/
    Ignored:    output/pilot2.1_gex/
    Ignored:    output/pilot2_HTO-2/
    Ignored:    output/pilot2_HTO/
    Ignored:    output/pilot2_gex_MAF01-152/
    Ignored:    output/pilot2_gex_MAF01/
    Ignored:    output/pilot2_gex_starsolo/
    Ignored:    output/pilot2_gex_starsoloED/
    Ignored:    output/pilot2_gex_starsoloED_GFP/
    Ignored:    output/pilot2_testing/
    Ignored:    output/pilot3.0/
    Ignored:    output/pilot3.0_MN/
    Ignored:    output/pilot3.0_captures-separate/
    Ignored:    output/pilot3.0_iPSC/
    Ignored:    output/pilot3_Lenti/
    Ignored:    references/Homo_sapiens.GRCh38.turboGFP.bed
    Ignored:    references/Homo_sapiens.GRCh38.turboGFP.fa
    Ignored:    references/Homo_sapiens.GRCh38.turboGFP.fa.fai
    Ignored:    references/Homo_sapiens.GRCh38.turboGFP.filtered.gtf
    Ignored:    references/Homo_sapiens.GRCh38.turboGFP.gtf
    Ignored:    references/SAindex/
    Ignored:    references/geno_test.vcf.gz
    Ignored:    references/pilot3/
    Ignored:    references/test
    Ignored:    references/turboGFP.fa
    Ignored:    references/turboGFP.gtf
    Ignored:    references/turboRFP.fa
    Ignored:    workflow/rules/

Untracked files:
    Untracked:  cellbender.dockerfile
    Untracked:  hwe1e-05_maf05_vcf_stats.txt
    Untracked:  hwe1e-05_vcf_stats.txt
    Untracked:  workflow/cellbender_jobs/
    Untracked:  workflow/rules_cellcalling-old-for-mergedy.smk

Unstaged changes:
    Modified:   analysis/2022-02-24_pilot3_LentiBarcodes.Rmd
    Modified:   config/config_pilot3.0_MN.yml
    Modified:   workflow/Snakefile
    Modified:   workflow/rules_cellcalling.smk
    Modified:   workflow/rules_cellranger-merge.smk
    Modified:   workflow/rules_demultiplexing.smk

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/2022-02-24_pilot3_LentiBarcodes.Rmd) and HTML (public/2022-02-24_pilot3_LentiBarcodes.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd bddd52c cazodi 2022-02-25 lenti barcode analysis
html bddd52c cazodi 2022-02-25 lenti barcode analysis

Goal

Generate a map between iPSC cell barcodes (Capture 5) and MN cell barcodes (Capture 4) by identifying the lenti barcode (14bp+30bp) shared by the two.

Overview of strategy

Blastn parsing

blastn strategy

Example scripts:

14 bp barcode: blastn -db output/pilot3_Lenti/00_sequences/bc14_forward.fa -query output/pilot3_Lenti/01_fasta/Capture5-Lenti.fa -query_loc 26-40 -word_size 5 -max_hsps 1 -evalue 0.1 -num_threads 4 -outfmt 6 -out output/pilot3_Lenti/02_blast/Capture5-Lenti_bc14_blast.out

30 bp barcode: blastn -db output/pilot3_Lenti/00_sequences/bc30_forward.fa -query output/pilot3_Lenti/01_fasta/Capture5-Lenti.fa -query_loc 46-76 -word_size 10 -max_hsps 1 -evalue 0.1 -max_target_seqs 1 -outfmt 6 -out output/pilot3_Lenti/02_blast/Capture5-Lenti_bc30_blast.out

Read in blastn hits and remove ambiguous matches by first keeping the longest hit for each read and if two lenti barcodes have equally long hits, removing the read entirely. Number of reads with lenti barcode matches:

load_parse_blastn <- function(path) {
  df <- fread(path, header=FALSE, select = c(1:6))
  names(df) <- c("qseqid", "sseqid", "pident", "length", "mismatch", "gapopen")
  # If >1 hit for a lenti barcode, keep the one(s) with the longer overlap
  df <- df[df[, .I[length == max(length)], by=qseqid]$V1]
  # If >1 hit for a lenti barcode with equal lengths, remove them both.
  df <- df[!(duplicated(df$qseqid) | duplicated(df$qseqid, fromLast = TRUE)), ]
  return(df)
}

## Load and process blastn results
c4_bc14 <- load_parse_blastn(paste0(blast_out, "Capture4-Lenti_bc14_blast.out"))
c5_bc14 <- load_parse_blastn(paste0(blast_out, "Capture5-Lenti_bc14_blast.out"))
c4_bc30 <- load_parse_blastn(paste0(blast_out, "Capture4-Lenti_bc30_blast.out"))
c5_bc30 <- load_parse_blastn(paste0(blast_out, "Capture5-Lenti_bc30_blast.out"))


# Merge
c4_both <- c4_bc14 %>% inner_join(c4_bc30, by = "qseqid",  suffix = c(".bc14", ".bc30"))
c5_both <- c5_bc14 %>% inner_join(c5_bc30, by = "qseqid",  suffix = c(".bc14", ".bc30"))


lenti_stats <- as.data.frame(list(capture=c("Capture 4", "Capture 5"),
                                  raw=c(31030718, 46041484),
                                  bc14=c(nrow(c4_bc14), nrow(c5_bc14)),
                                  bc30=c(nrow(c4_bc30), nrow(c5_bc30)),
                                  bc14_and_30=c(nrow(c4_both), nrow(c5_both))))
rm(c4_bc14, c5_bc14, c4_bc30, c5_bc30)

lenti_stats %>% mutate_at(vars(3:5), list(percent_raw=~./raw*100)) %>%
  mutate(across(where(is.numeric), round, 1))
    capture      raw     bc14     bc30 bc14_and_30 bc14_percent_raw
1 Capture 4 31030718  5831776  2809672     2381776             18.8
2 Capture 5 46041484 17260005 12795040    12544555             37.5
  bc30_percent_raw bc14_and_30_percent_raw
1              9.1                     7.7
2             27.8                    27.2

For all the blastn hits returned (evalue <= 0.1), does the quality of the 14 bp barcode correlate to the quality of the 30 bp barcode?

pn4 <- c4_both %>% count(length.bc14) %>% mutate(length.bc14 = as.factor(length.bc14)) %>%
  ggbarplot(x = "length.bc14", y = "n", label = TRUE, label.pos = "in", yscale = "log10") 
pn5 <- c5_both %>% count(length.bc14) %>% mutate(length.bc14 = as.factor(length.bc14)) %>%
  ggbarplot(x = "length.bc14", y = "n", label = TRUE, label.pos = "in", yscale = "log10")
p4 <- ggboxplot(c4_both, x="length.bc14", y = "length.bc30", outlier.shape = NA)
p5 <- ggboxplot(c5_both, x="length.bc14", y = "length.bc30", outlier.shape = NA)

plot_grid(pn4, pn5, p4, p5, ncol=2, rel_heights = c(1, 1.5), labels = "auto")
Relationship between blastn alignment length for the 14 bp and 30 bp lenti barcodes with an evalue <= 0.1 for (a) Capture4 and (b) Capture5.

Relationship between blastn alignment length for the 14 bp and 30 bp lenti barcodes with an evalue <= 0.1 for (a) Capture4 and (b) Capture5.

Filter and merge with cell barcodes

Because we are relying primarily on the lenti barcodes for QC (as the header 25 bp and linker 4 bp regions are generally low quality), we want to set a pretty strict limit for matching. Thus we will remove any reads with lenti barcode hits <= 12 bp or 26 bp in length or with > 1 or 2 mismatches for the 14 and 30 bp barcodes, respectively.

# Add lenti barcode IDs
c4_both$lenti_bc <- paste0("lenti_", c4_both$sseqid.bc14, "-", c4_both$sseqid.bc30)
c5_both$lenti_bc <- paste0("lenti_", c5_both$sseqid.bc14, "-", c5_both$sseqid.bc30)

# Filtering by minimum length
c4_both <- subset(c4_both, c4_both$length.bc14 >= 12 & c4_both$length.bc30 >= 26)
c5_both <- subset(c5_both, c5_both$length.bc14 >= 12 & c5_both$length.bc30 >= 26)
lenti_stats$length_filter <- c(nrow(c4_both), nrow(c5_both))

# Filtering by maximum mismatches
c4_both <- subset(c4_both, c4_both$mismatch.bc14 <= 1 & c4_both$mismatch.bc30 <= 2)
c5_both <- subset(c5_both, c5_both$mismatch.bc14 <= 1 & c5_both$mismatch.bc30 <= 2)

lenti_stats$mismatch_filter <- c(nrow(c4_both), nrow(c5_both))
lenti_stats 
    capture      raw     bc14     bc30 bc14_and_30 length_filter
1 Capture 4 31030718  5831776  2809672     2381776       2340970
2 Capture 5 46041484 17260005 12795040    12544555      12431016
  mismatch_filter
1         2335546
2        12411301

Merge with cellbarcodes from the R1 reads

The R1 reads are all exactly 28 bp and contain the 16 bp cell barcode followed by a 12 bp UMI.

parse_merge_R1_cellbarcodes <- function(path, lenti) {
  cbc <- fread(path, header=FALSE, sep="\t")
  summary(nchar(cbc$cell_barcode))
  names(cbc) <- c("qseqid", "R1")
  cbc$qseqid <- gsub(">", "", gsub(" .*", "", cbc$qseqid))
  cbc <- separate(cbc, R1, into = c("cell_barcode", "umi"), sep = 16)
  lenti <- lenti %>% left_join(cbc, by = "qseqid")
  rm(cbc)
  return(lenti)
}

c4_both <- parse_merge_R1_cellbarcodes(paste0(fasta_out, "Capture4-Lenti_R1.tsv"), c4_both)
if(save){ write.table(c4_both, paste0(out, "Capture4-Lenti_merged_barcodes.tsv"), 
                      sep = "\t", quote=FALSE, row.names = FALSE)}

c5_both <- parse_merge_R1_cellbarcodes(paste0(fasta_out, "Capture5-Lenti_R1.tsv"), c5_both)
if(save){ write.table(c5_both, paste0(out, "Capture5-Lenti_merged_barcodes.tsv"), 
                      sep = "\t", quote=FALSE, row.names = FALSE)}

Find unambiguous cell-to-lenti barcode pairs

Ideally, each cellbarcode should be associated with a single lenti-barcode, however some cell barcodes have umis that are assigned to more than one lenti-barcode:

c4_barcode_umi_counts <- c4_both %>% distinct(cell_barcode, lenti_bc, umi) %>%
  group_by(cell_barcode, lenti_bc) %>%
  tally() %>% group_by(cell_barcode) %>%
  mutate(percent_umis_with_lentiBC = n/sum(n),
         total_umis = sum(n))

plot_pCells_c4 <- ggscatterhist(c4_barcode_umi_counts, x="n",
                                y="percent_umis_with_lentiBC",
              color="total_umis", xscale = "log10") 
Capture4: Each point is a cell-lenti barcode pair. The x-axis is the number of umi supporting that pair. The y-axis is the percent of the total number of umi for the cell barcode that represents, where a 1 means that all umis from that cell have the same lenti barcode.

Capture4: Each point is a cell-lenti barcode pair. The x-axis is the number of umi supporting that pair. The y-axis is the percent of the total number of umi for the cell barcode that represents, where a 1 means that all umis from that cell have the same lenti barcode.

c5_barcode_umi_counts <- c5_both %>% distinct(cell_barcode, lenti_bc, umi) %>%
  group_by(cell_barcode, lenti_bc) %>%
  tally() %>% group_by(cell_barcode) %>%
  mutate(percent_umis_with_lentiBC = n/sum(n),
         total_umis = sum(n))

plot_pCells_c5 <- ggscatterhist(c5_barcode_umi_counts, x="n",
                                y="percent_umis_with_lentiBC",
              color="total_umis", xscale = "log10") 
Capture5: Each point is a cell-lenti barcode pair. The x-axis is the number of umi supporting that pair. The y-axis is the percent of the total number of umi for the cell barcode that represents, where a 1 means that all umis from that cell have the same lenti barcode.

Capture5: Each point is a cell-lenti barcode pair. The x-axis is the number of umi supporting that pair. The y-axis is the percent of the total number of umi for the cell barcode that represents, where a 1 means that all umis from that cell have the same lenti barcode.

A summary of the number of cell barcodes meeting different criteria for inclusion:

c4_barcode_umi_counts_3 <- subset(c4_barcode_umi_counts, total_umis >= 3)
c5_barcode_umi_counts_3 <- subset(c5_barcode_umi_counts, total_umis >= 3)

lenti_cell_stats <- t(data.frame(list(
  nCells = c(length(unique(c4_barcode_umi_counts$cell_barcode)), 
             length(unique(c5_barcode_umi_counts$cell_barcode))),
  cells_with_1_lenti = c(nrow(subset(c4_barcode_umi_counts,
                                             percent_umis_with_lentiBC == 1)), 
                         nrow(subset(c5_barcode_umi_counts, 
                                       percent_umis_with_lentiBC == 1))),
  nCells_3umi = c(length(unique(c4_barcode_umi_counts_3$cell_barcode)), 
                  length(unique(c5_barcode_umi_counts_3$cell_barcode))),
  umi3_cells_with_1_lenti = c(nrow(subset(c4_barcode_umi_counts_3,
                                             percent_umis_with_lentiBC == 1)), 
                           nrow(subset(c5_barcode_umi_counts_3, 
                                       percent_umis_with_lentiBC == 1))),
  umi3_cells_with_80p_SameLenti = c(nrow(subset(c4_barcode_umi_counts_3,
                                             percent_umis_with_lentiBC >= 2/3)), 
                                 nrow(subset(c5_barcode_umi_counts_3, 
                                       percent_umis_with_lentiBC >= 2/3))))))
colnames(lenti_cell_stats) <- c("Capture4", "Capture5")
lenti_cell_stats
                              Capture4 Capture5
nCells                           60256   194328
cells_with_1_lenti               50846   135378
nCells_3umi                      10490    53053
umi3_cells_with_1_lenti           4510     2324
umi3_cells_with_80p_SameLenti     8173    12880

We will keep cell barcodes that have support from at least 3 UMIs and where at least 66.6% of the UMIs are for the same lenti-barcode.

c4_good <- subset(c4_barcode_umi_counts_3, percent_umis_with_lentiBC >= 2/3)
c5_good <- subset(c5_barcode_umi_counts_3, percent_umis_with_lentiBC >= 2/3)

message("Number of capture 4 and capture 5 cells remaining: ", 
        nrow(c4_good), ", ", nrow(c5_good))
Number of capture 4 and capture 5 cells remaining: 8173, 12880

Generage lenti to cell barcode key for Captures 4 to 5

While each cell barcode should ideally only have 1 lenti barcode, a lenti barcode might be associated with many cell barcodes. Here is the distribution:

c4_good_con <- c4_good %>% group_by(lenti_bc) %>% 
     mutate(cell_barcodes = paste0(cell_barcode, collapse = ";")) %>%
  mutate(n = str_count(cell_barcodes, ";") + 1) %>% 
  distinct(lenti_bc, .keep_all= TRUE) %>% 
  select(lenti_bc, n, cell_barcodes)
summary(c4_good_con$n)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    1.00    2.00   10.93    5.00 3075.00 
p4 <- ggplot(c4_good_con, aes(log10(n))) + geom_histogram(bins = 100) + theme_cowplot()

c5_good_con <- c5_good %>% group_by(lenti_bc) %>% 
     mutate(cell_barcodes = paste0(cell_barcode, collapse = ";")) %>%
  mutate(n = str_count(cell_barcodes, ";") + 1) %>% 
  distinct(lenti_bc, .keep_all= TRUE) %>% 
  select(lenti_bc, n, cell_barcodes)
summary(c5_good_con$n)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    1.00    2.00   14.89    6.00 6429.00 
p5 <- ggplot(c5_good_con, aes(log10(n))) + geom_histogram(bins = 100) + theme_cowplot()


if(save){ 
  write.table(c4_good_con, paste0(out, "Capture4-Lenti_cellbarcodes.tsv"),
                      sep = "\t", quote=FALSE, row.names = FALSE)
  write.table(c5_good_con, paste0(out, "Capture5-Lenti_cellbarcodes.tsv"),
                      sep = "\t", quote=FALSE, row.names = FALSE)}

plot_grid(p4, p5)
Distribution of the number of cell barcodes assigned to each lenti-barcode for (a) Capture 4 and (b) capture 5. Note the x-axis is on the log10 scale, as both have an extreme outlier.

Distribution of the number of cell barcodes assigned to each lenti-barcode for (a) Capture 4 and (b) capture 5. Note the x-axis is on the log10 scale, as both have an extreme outlier.

Merge the two keys, this is the total number of lenti-barcodes that map between captures 4 and 5:

key <- c4_good_con %>% inner_join(c5_good_con, by = "lenti_bc",  suffix = c(".Capture4", ".Capture5"))

nrow(key)
[1] 571
if(save){write.table(key, paste0(out, "Lenti2cell_barcode_key.tsv"), sep = "\t", 
              quote=FALSE, row.names = FALSE)}

sessionInfo()
R version 4.1.1 (2021-08-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Red Hat Enterprise Linux 8.5 (Ootpa)

Matrix products: default
BLAS/LAPACK: /usr/lib64/libopenblasp-r0.3.12.so

locale:
 [1] LC_CTYPE=en_AU.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_AU.UTF-8        LC_COLLATE=en_AU.UTF-8    
 [5] LC_MONETARY=en_AU.UTF-8    LC_MESSAGES=en_AU.UTF-8   
 [7] LC_PAPER=en_AU.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] stringr_1.4.0     viridis_0.6.2     viridisLite_0.4.0 cowplot_1.1.1    
 [5] ggpubr_0.4.0      ggplot2_3.3.5     data.table_1.14.2 tidyr_1.1.4      
 [9] dplyr_1.0.7       argparse_2.1.3   

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.1 xfun_0.28        bslib_0.3.1      purrr_0.3.4     
 [5] carData_3.0-4    colorspace_2.0-2 vctrs_0.3.8      generics_0.1.1  
 [9] htmltools_0.5.2  yaml_2.2.1       utf8_1.2.2       rlang_0.4.12    
[13] jquerylib_0.1.4  later_1.3.0      pillar_1.6.4     glue_1.6.0      
[17] withr_2.4.3      DBI_1.1.1        lifecycle_1.0.1  munsell_0.5.0   
[21] ggsignif_0.6.3   gtable_0.3.0     workflowr_1.6.2  evaluate_0.14   
[25] labeling_0.4.2   knitr_1.36       fastmap_1.1.0    httpuv_1.6.5    
[29] fansi_1.0.0      highr_0.9        broom_0.7.10     Rcpp_1.0.7      
[33] backports_1.4.1  promises_1.2.0.1 scales_1.1.1     jsonlite_1.7.2  
[37] abind_1.4-5      farver_2.1.0     fs_1.5.2         gridExtra_2.3   
[41] digest_0.6.29    stringi_1.7.6    rstatix_0.7.0    rprojroot_2.0.2 
[45] grid_4.1.1       tools_4.1.1      magrittr_2.0.1   sass_0.4.0      
[49] tibble_3.1.6     car_3.0-12       crayon_1.4.2     whisker_0.4     
[53] pkgconfig_2.0.3  ellipsis_0.3.2   assertthat_0.2.1 rmarkdown_2.11  
[57] R6_2.5.1         git2r_0.29.0     compiler_4.1.1