Last updated: 2021-05-17
Checks: 6 1
Knit directory: KEJP_2020_splatPop/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210215)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version b1e4853. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: data/ALL.chr2.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.EURO.0.99.MAF05.filtered.vcf
Ignored: data/D30.h5
Ignored: data/Diabetes/
Ignored: data/IBD/
Ignored: data/agg_IBD-ss2.rds
Ignored: data/agg_Neuro-10x_DA.rds
Ignored: data/agg_NeuroSeq-10x_D11-pool6-filt.rds
Ignored: data/agg_NeuroSeq-10x_D11-pool6.rds
Ignored: data/agg_diabetes-ss2.rds
Ignored: data/agg_iPSC-ss2_D0.rds
Ignored: data/covid/
Ignored: data/cuomo_NeuroSeq_10x_all_sce.rds
Ignored: data/pseudoB_IBD-ss2.rds
Ignored: data/pseudoB_Neuro-10x_DA.rds
Ignored: data/pseudoB_NeuroSeq-10x_D11-pool6-filt.rds
Ignored: data/pseudoB_NeuroSeq-10x_D11-pool6.rds
Ignored: data/pseudoB_diabetes-ss2.rds
Ignored: data/pseudoB_iPSC-ss2_D0.rds
Ignored: data/sce_IBD-ss2.rds
Ignored: data/sce_IBD-ss2_HC2.rds
Ignored: data/sce_Neuro-10x.rds
Ignored: data/sce_Neuro-10x_2CT.rds
Ignored: data/sce_Neuro-10x_DA-wihj4.rds
Ignored: data/sce_NeuroSeq-10x_D11-pool6-filt-mita1FPP.rds
Ignored: data/sce_NeuroSeq-10x_D11-pool6-filt.rds
Ignored: data/sce_NeuroSeq-10x_D11-pool6-mita1FPP.rds
Ignored: data/sce_NeuroSeq-10x_D11-pool6.rds
Ignored: data/sce_diabetes-ss2.rds
Ignored: data/sce_diabetes-ss2_T2D-5.rds
Ignored: data/sce_iPSC-ss2_D0-joxm39.rds
Ignored: data/sce_iPSC-ss2_D0.rds
Ignored: output/00_Figures/
Ignored: output/01_sims/
Ignored: output/demo_eQTL/
Ignored: references/1000GP_Phase3_sample_info.txt
Ignored: references/Homo_sapiens.GRCh38.99.chromosome.22.gff3
Ignored: references/chr2.filt.2-temporary.bed
Ignored: references/chr2.filt.2-temporary.bim
Ignored: references/chr2.filt.2-temporary.fam
Ignored: references/chr2.filt.2.log
Ignored: references/chr2.filt.log
Ignored: references/chr2.filt.map
Ignored: references/chr2.filt.nosex
Ignored: references/chr2.filt.ped
Ignored: references/chr2.filt.prune.in
Ignored: references/chr2.filt.prune.out
Ignored: references/chr2.filtered.log
Ignored: references/chr2.filtered.nosex
Ignored: references/chr2.filtered.vcf
Ignored: references/chr2.filtered2.log
Ignored: references/chr2.filtered2.nosex
Ignored: references/chr2.filtered2.vcf
Ignored: references/chr2.filtered3.log
Ignored: references/chr2.filtered3.nosex
Ignored: references/chr2.filtered3.vcf
Ignored: references/chr2.genes.gff3
Ignored: references/chr2.vcf.gz
Ignored: references/chr22.filt.log
Ignored: references/chr22.filt.map
Ignored: references/chr22.filt.nosex
Ignored: references/chr22.filt.ped
Ignored: references/chr22.filt.prune.in
Ignored: references/chr22.filt.prune.out
Ignored: references/chr22.filtered.log
Ignored: references/chr22.filtered.nosex
Ignored: references/chr22.filtered.vcf
Ignored: references/chr22.filtered.vcf.bed
Ignored: references/chr22.filtered.vcf.bim
Ignored: references/chr22.filtered.vcf.fam
Ignored: references/chr22.filtered.vcf.log
Ignored: references/chr22.filtered.vcf.nosex
Ignored: references/chr22.filtered.vcf.rel
Ignored: references/chr22.filtered.vcf.rel.id
Ignored: references/chr22.filtered.vcf.rel_mod
Ignored: references/chr22.genes.gff3
Ignored: references/chr22.genes.gff3_annotation
Ignored: references/chr22.genes.gff3_chunks
Ignored: references/chr22.vcf.gz
Ignored: references/keep_samples.txt
Ignored: references/remove_snps.txt
Ignored: references/test.log
Ignored: references/test.nosex
Untracked files:
Untracked: .DS_Store
Untracked: .cache/
Untracked: .config/
Untracked: .snakemake/
Untracked: KEJP_2020_splatPop.Rproj
Untracked: Rplots.pdf
Untracked: analysis/10x-Neuro_simulations.Rmd
Untracked: analysis/Applications_eQTL-mapping.Rmd
Untracked: code/misc_functions.R
Untracked: code/plot_functions2.R
Untracked: docs/
Untracked: envs/limix_env.yaml
Untracked: mod
Untracked: resources/keep_samples.txt
Untracked: tmp.txt
Untracked: workflow/
Unstaged changes:
Modified: .gitignore
Modified: .gitlab-ci.yml
Modified: CITATION
Modified: Dockerfile
Modified: LICENSE
Modified: README.md
Modified: _workflowr.yml
Modified: analysis/10x-Neuro_estimate-params.Rmd
Modified: analysis/KEJP_iPSC-ss2.Rmd
Modified: analysis/_site.yml
Modified: analysis/about.Rmd
Modified: analysis/index.Rmd
Modified: analysis/license.Rmd
Modified: analysis/ss2-iPSC_estimate-params.Rmd
Modified: analysis/ss2-iPSC_simulations.Rmd
Modified: cluster.json
Modified: code/1_process-empirical-data.R
Modified: code/2_estimate-splatPopParams.R
Modified: code/4_simulate_DEG.R
Modified: code/README.md
Modified: code/plot_functions.R
Modified: data/README.md
Modified: environment.yml
Modified: envs/myenv.yaml
Modified: org/README.md
Modified: org/project_management.org
Modified: output/README.md
Modified: references/README.md
Modified: resources/README.md
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/10x-Neuro_estimate-params.Rmd
) and HTML (public/10x-Neuro_estimate-params.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | b1e4853 | cazodi | 2021-03-16 | update plot functions |
suppressPackageStartupMessages({
library(data.table)
library(SingleCellExperiment)
library(scater)
library(tidyverse)
library(Matrix)
library(splatter)
library(fitdistrplus)
})
set.seed(42)
504
n.genes <- FALSE save <-
The empirical data and the preprocessing performed is described in Jerber et al., 2021. The processed data was downloaded from Zenodo as an h5. This was converted to an SCE object using in house code:
://zenodo.org/record/4333872/files/D30.h5?download=1 data/.
wget https2019_sceQTL-Workflow/code/scanpy_to_SCE.R -h5 data/D30.h5 -od data/ -s sce_Neuro-10x.rds Rscript EUUI_
This object contins count data for 32,738 genes for 250923 cells from 175 individuals sequenced in 12 pools. The cells are annotated as being one of seven cell types. For our reference data we keep cells from the two most abundant celltypes (Floor Plate Progenitors, FPPs, n=58k; dopaminergic neurons, DAs, n=69k) sequenced in the batch with the most cells (pool7, n=17,229). This leaves 17229 cells from 22 individuals (cells per sample: min=119, mean=783, max=2548). After cell filtering, genes were filtered to keep only genes with non-zero counts in at least 0.5% of cells (as in Jerber et al), leaving 13086 genes. Then the n.genes used for this study (1255) were randomly selected.
Snapshot of Neuro-10x reference data after filtering:
# Get subset of data to use for estimating params
readRDS("data/sce_Neuro-10x.rds")
sce <-
# Keep two most abundant cell types
# table(sce$celltype) #DA=69007 FPP=58109
subset(sce, , celltype %in% c("DA", "FPP"))
sce <-
# Keep largest batch
#sort(table(sce$pool_id))
subset(sce, , pool_id == "pool7")
sce <-
# Keep genes with non-zero count in at least 0.05% of cells (Jerber et al)
rowSums(counts(sce) != 0) >= ncol(sce) * 0.005
genes.keep <-# table(genes.keep) # 13086 genes meet this criteria
sce[genes.keep, ]
sce <-
# Randomly select n genes
sce[sample(rownames(sce), n.genes), ]
sce <-
# Standardize col data names
colnames(colData(sce))[colnames(colData(sce)) == "celltype"] <- "Group"
colnames(colData(sce))[colnames(colData(sce)) == "donor_id"] <- "Sample"
colnames(colData(sce))[colnames(colData(sce)) == "pool_id"] <- "Batch"
counts(sce) <- as.matrix(counts(sce))
if(save){ saveRDS(sce, file = "data/sce_Neuro-10x_2CT.rds") }
sce
class: SingleCellExperiment
dim: 504 17229
metadata(0):
assays(1): counts
rownames(504): AC090627.1 GRIK5 ... ANKRD26 RP11-849I19.1
rowData names(0):
colnames(17229): AAACCTGAGAACTCGG-1-13 AAACCTGAGCAGGCTA-1-13 ...
TTTGTCATCACATGCA-1-16 TTTGTCATCAGTTCGA-1-16
colData names(9): index sample_index ... Batch treatment
reducedDimNames(0):
altExpNames(0):
counts(sce[1:5,1:5])
AAACCTGAGAACTCGG-1-13 AAACCTGAGCAGGCTA-1-13 AAACCTGAGTACGTTC-1-13
AC090627.1 0 0 0
GRIK5 0 0 0
TREX1 0 1 0
C7orf13 0 0 0
HSP90AA1 5 17 14
AAACCTGGTAGGGACT-1-13 AAACCTGGTAGTAGTA-1-13
AC090627.1 0 0
GRIK5 0 0
TREX1 0 0
C7orf13 0 0
HSP90AA1 25 18
For population wide gene mean and variance parameters we do not want to add additional variance by including multiple celltypes in the data, thus we will only use the most abundant cell type (DA, n=13,186) for the population wide aggregation. Only one sample (uupc_2) had fewer than 100 DA cells and was removed for this data.
subset(sce, , Group == "DA")
sce.DA <- names(table(sce.DA$Sample)[table(sce.DA$Sample) > 100])
keepSamples <- subset(sce.DA, , Sample %in% keepSamples)
sce.DA100 <-
.10x <- aggregateAcrossCells(sce.DA100, ids = sce.DA100$Sample, statistics="mean")
agg
if(save){ saveRDS(agg.10x, file = "data/agg_Neuro-10x_DA.rds") }
counts(agg.10x[1:5,1:5])
HPSI0114i-wegi_1 HPSI0115i-iuad_2 HPSI0115i-sehp_2 HPSI0215i-hipn_1
AC090627.1 0.02167183 0.02237136 0.06630824 0.07379135
GRIK5 0.08049536 0.06711409 0.09050179 0.08524173
TREX1 0.08359133 0.03803132 0.05107527 0.01653944
C7orf13 0.12383901 0.14093960 0.16487455 0.10941476
HSP90AA1 13.40866873 12.58836689 14.09856631 16.03435115
HPSI0215i-uiao_2
AC090627.1 0.04909561
GRIK5 0.08010336
TREX1 0.03359173
C7orf13 0.13436693
HSP90AA1 13.23514212
Use cells from sample with most DA cells (HPSI0614i-wihj_4, n=2268)
sort(table(sce.DA$Sample))
HPSI0115i-uupc_2 HPSI0514i-wiii_3 HPSI0514i-yewo_4 HPSI0614i-juzt_4
87 125 136 138
HPSI0914i-yuvg_2 HPSI0714i-keui_4 HPSI1014i-tixi_4 HPSI0514i-naah_2
225 288 301 313
HPSI0114i-wegi_1 HPSI0215i-uiao_2 HPSI0914i-zerv_7 HPSI0414i-seru_1
323 387 420 428
HPSI0115i-iuad_2 HPSI0414i-xojn_3 HPSI0514i-sohd_2 HPSI0514i-rutc_2
447 461 471 506
HPSI0814i-siqu_4 HPSI0215i-hipn_1 HPSI1114i-kuul_1 HPSI0115i-sehp_2
783 786 989 1116
HPSI1014i-roug_3 HPSI0614i-wihj_4
2188 2268
subset(sce.DA, , Sample == "HPSI0614i-wihj_4")
sce.wihj4 <-
if(save){ saveRDS(sce.wihj4, file = "data/sce_Neuro-10x_DA-wihj4.rds") }
For DA cells: shape = 1.532930934, rate = 0.002557208
as.numeric(unname(table(sce.DA$Sample)))
n.DA <-summary(fitdist(n.DA, distr = "gamma", method = "mle", lower = c(0, 0)))
Fitting of the distribution ' gamma ' by maximum likelihood
Parameters :
estimate Std. Error
shape 1.532930934 NA
rate 0.002557208 NA
Loglikelihood: -161.6325 AIC: 327.265 BIC: 329.4471
Correlation matrix:
[1] NA
For FPP cells: shape = 1.080982011, rate = 0.005884068
subset(sce, , Group == "FPP")
sce.FPP <- as.numeric(unname(table(sce.FPP$Sample)))
n.FPP <-summary(fitdist(n.FPP, distr = "gamma", method = "mle", lower = c(0, 0)))
Fitting of the distribution ' gamma ' by maximum likelihood
Parameters :
estimate Std. Error
shape 1.080982011 NA
rate 0.005884068 NA
Loglikelihood: -136.66 AIC: 277.32 BIC: 279.502
Correlation matrix:
[1] NA
Single-cell parameters are estimated from scRNA-seq data from cells from the donor with the most cells (HPSI0614i-wihj_4) using 1255 randomly selected genes. Down-sampling the number of genes to match the number of genes we will simulate ensures the estimated library size parameters reflect real data.
Population parameters are estimated from either mean aggregated or pseudo-bulked (i.e. sum aggregated) scRNA-seq data from DA cells only. When mean aggregation is used we set pop.quant.norm to False because quantile normalization is not needed.
Parameters estimated for Neuro-10x:
newSplatPopParams(pop.cv.bins = 50)
params <-
# Estimate params from single-cell population-scale data
splatPopEstimate(params = params,
params <-counts = as.matrix(counts(sce.wihj4)),
means = as.matrix(counts(agg.10x)))
setParams(params, pop.quant.norm = FALSE)
params <-
# Save parameter files
if(save){ saveRDS(params, file = "output/01_sims/splatPop-params_Neuro-10x.rds")}
params
A Params object of class SplatPopParams
Parameters can be (estimable) or [not estimable], 'Default' or 'NOT DEFAULT'
Secondary parameters are usually set during simulation
Global:
(GENES) (CELLS) [Seed]
504 2268 617511
53 additional parameters
Batches:
[BATCHES] [BATCH CELLS] [Location] [Scale] [Remove]
1 2268 0.1 0.1 FALSE
Mean:
(RATE) (SHAPE)
3.32657467596678 0.60912244170244
Library size:
(LOCATION) (SCALE) (Norm)
5.39700653849036 0.160666914198516 FALSE
Exprs outliers:
(PROBABILITY) (LOCATION) (SCALE)
0.0218687872763419 4.40374693749414 0.714296444062618
Groups:
[Groups] [Group Probs]
1 1
Diff expr:
[Probability] [Down Prob] [Location] [Scale]
0.1 0.5 0.1 0.4
BCV:
(COMMON DISP) (DOF)
0.152945761376577 63.6282262338234
Dropout:
[Type] (MIDPOINT) (SHAPE)
none -0.284905276922353 -1.17852570735244
Paths:
[From] [Steps] [Skew] [Non-linear] [Sigma Factor]
0 100 0.5 0.1 0.8
Population params:
(MEAN.SHAPE) (MEAN.RATE) [POP.QUANT.NORM] [similarity.scale]
0.411179662876732 0.915576478884146 FALSE 1
[batch.size] [nCells.sample] [nCells.shape] [nCells.rate]
10 FALSE 1.5 0.015
[CV.BINS]
50
(CV.PARAMS)
data.frame (50 x 4) with columns: start, end, shape, rate
start end shape rate
1 0.00000 0.00526 7.733047 7.252956
2 0.00526 0.00705 30.043687 39.862890
3 0.00705 0.00809 17.577106 25.013988
4 0.00809 0.00988 48.156110 67.715723
# ... with 46 more rows
eQTL params:
[eqtl.n] [eqtl.dist]
0.5 1e+06
[eqtl.maf.min] [eqtl.maf.max]
0.05 0.5
[eqtl.group.specific] [eqtl.condition.specific]
0.2 0.2
(eqtl.ES.shape) (eqtl.ES.rate)
3.6 12
Condition params:
[nConditions] [condition.prob] [cde.prob] [cde.downProb]
1 1 0.1 0.5
[cde.facLoc] [cde.facScale]
0.1 0.4
::session_info() devtools
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.0.4 (2021-02-15)
os Red Hat Enterprise Linux
system x86_64, linux-gnu
ui X11
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz Australia/Melbourne
date 2021-05-17
─ Packages ───────────────────────────────────────────────────────────────────
package * version date lib source
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.2)
backports 1.2.0 2020-11-02 [1] CRAN (R 4.0.2)
beachmat 2.6.4 2020-12-20 [1] Bioconductor
beeswarm 0.3.1 2021-03-07 [1] CRAN (R 4.0.4)
Biobase * 2.50.0 2020-10-27 [1] Bioconductor
BiocGenerics * 0.36.1 2021-04-16 [1] Bioconductor
BiocNeighbors 1.8.2 2020-12-07 [1] Bioconductor
BiocParallel 1.24.1 2020-11-06 [1] Bioconductor
BiocSingular 1.6.0 2020-10-27 [1] Bioconductor
bitops 1.0-7 2021-04-24 [1] CRAN (R 4.0.4)
broom 0.7.6 2021-04-05 [1] CRAN (R 4.0.4)
bslib 0.2.4 2021-01-25 [1] CRAN (R 4.0.3)
cachem 1.0.4 2021-02-13 [1] CRAN (R 4.0.3)
callr 3.7.0 2021-04-20 [1] CRAN (R 4.0.4)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.0.2)
checkmate 2.0.0 2020-02-06 [1] CRAN (R 4.0.2)
cli 2.4.0 2021-04-05 [1] CRAN (R 4.0.4)
colorspace 2.0-0 2020-11-11 [1] CRAN (R 4.0.2)
crayon 1.4.1 2021-02-08 [1] CRAN (R 4.0.4)
data.table * 1.13.2 2020-10-19 [1] CRAN (R 4.0.2)
DBI 1.1.1 2021-01-15 [1] CRAN (R 4.0.4)
dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.0.4)
DelayedArray 0.16.0 2020-10-27 [1] Bioconductor
DelayedMatrixStats 1.12.3 2021-02-03 [1] Bioconductor
desc 1.3.0 2021-03-05 [1] CRAN (R 4.0.4)
devtools 2.3.2 2020-09-18 [1] CRAN (R 4.0.2)
digest 0.6.27 2020-10-24 [1] CRAN (R 4.0.2)
dplyr * 1.0.5 2021-03-05 [1] CRAN (R 4.0.4)
edgeR 3.32.1 2021-01-14 [1] Bioconductor
ellipsis 0.3.1 2020-05-15 [1] CRAN (R 4.0.2)
evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.2)
fansi 0.4.2 2021-01-15 [1] CRAN (R 4.0.4)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.0.3)
fitdistrplus * 1.1-3 2020-12-05 [1] CRAN (R 4.0.3)
forcats * 0.5.1 2021-01-27 [1] CRAN (R 4.0.4)
fs 1.5.0 2020-07-31 [1] CRAN (R 4.0.2)
generics 0.1.0 2020-10-31 [1] CRAN (R 4.0.2)
GenomeInfoDb * 1.26.7 2021-04-08 [1] Bioconductor
GenomeInfoDbData 1.2.4 2020-11-10 [1] Bioconductor
GenomicRanges * 1.42.0 2020-10-27 [1] Bioconductor
ggbeeswarm 0.6.0 2017-08-07 [1] CRAN (R 4.0.2)
ggplot2 * 3.3.3 2020-12-30 [1] CRAN (R 4.0.4)
git2r 0.28.0 2021-01-10 [1] CRAN (R 4.0.4)
glue 1.4.2 2020-08-27 [1] CRAN (R 4.0.2)
gridExtra 2.3 2017-09-09 [1] CRAN (R 4.0.2)
gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.2)
haven 2.4.0 2021-04-14 [1] CRAN (R 4.0.4)
hms 1.0.0 2021-01-13 [1] CRAN (R 4.0.4)
htmltools 0.5.1.1 2021-01-22 [1] CRAN (R 4.0.3)
httpuv 1.5.5 2021-01-13 [1] CRAN (R 4.0.4)
httr 1.4.2 2020-07-20 [1] CRAN (R 4.0.2)
IRanges * 2.24.0 2020-10-27 [1] Bioconductor
irlba 2.3.3 2019-02-05 [1] CRAN (R 4.0.2)
jquerylib 0.1.3 2020-12-17 [1] CRAN (R 4.0.3)
jsonlite 1.7.2 2020-12-09 [1] CRAN (R 4.0.4)
knitr 1.32 2021-04-14 [1] CRAN (R 4.0.4)
later 1.1.0.1 2020-06-05 [1] CRAN (R 4.0.2)
lattice 0.20-41 2020-04-02 [2] CRAN (R 4.0.4)
lifecycle 1.0.0 2021-02-15 [1] CRAN (R 4.0.4)
limma 3.46.0 2020-10-27 [1] Bioconductor
locfit 1.5-9.4 2020-03-25 [1] CRAN (R 4.0.2)
lubridate 1.7.10 2021-02-26 [1] CRAN (R 4.0.4)
magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.0.3)
MASS * 7.3-53.1 2021-02-12 [1] CRAN (R 4.0.4)
Matrix * 1.3-2 2021-01-06 [1] CRAN (R 4.0.2)
MatrixGenerics * 1.2.0 2020-10-27 [1] Bioconductor
matrixStats * 0.57.0 2020-09-25 [1] CRAN (R 4.0.2)
memoise 2.0.0 2021-01-26 [1] CRAN (R 4.0.4)
modelr 0.1.8 2020-05-19 [1] CRAN (R 4.0.2)
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.2)
pillar 1.6.0 2021-04-13 [1] CRAN (R 4.0.4)
pkgbuild 1.2.0 2020-12-15 [1] CRAN (R 4.0.4)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.2)
pkgload 1.2.1 2021-04-06 [1] CRAN (R 4.0.4)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.2)
processx 3.5.1 2021-04-04 [1] CRAN (R 4.0.4)
promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.0.4)
ps 1.6.0 2021-02-28 [1] CRAN (R 4.0.4)
purrr * 0.3.4 2020-04-17 [1] CRAN (R 4.0.2)
R6 2.5.0 2020-10-28 [1] CRAN (R 4.0.2)
Rcpp 1.0.6 2021-01-15 [1] CRAN (R 4.0.4)
RCurl 1.98-1.3 2021-03-16 [1] CRAN (R 4.0.4)
readr * 1.4.0 2020-10-05 [1] CRAN (R 4.0.2)
readxl 1.3.1 2019-03-13 [1] CRAN (R 4.0.2)
remotes 2.3.0 2021-04-01 [1] CRAN (R 4.0.4)
reprex 2.0.0 2021-04-02 [1] CRAN (R 4.0.4)
rlang 0.4.10 2020-12-30 [1] CRAN (R 4.0.4)
rmarkdown 2.7 2021-02-19 [1] CRAN (R 4.0.4)
rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.0.3)
rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.0.3)
rsvd 1.0.5 2021-04-16 [1] CRAN (R 4.0.4)
rvest 1.0.0 2021-03-09 [1] CRAN (R 4.0.4)
S4Vectors * 0.28.0 2020-10-27 [1] Bioconductor
sass 0.3.1 2021-01-24 [1] CRAN (R 4.0.3)
scales 1.1.1 2020-05-11 [1] CRAN (R 4.0.2)
scater * 1.18.6 2021-02-26 [1] Bioconductor
scuttle 1.0.3 2020-11-23 [1] Bioconductor
sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.2)
SingleCellExperiment * 1.12.0 2020-10-27 [1] Bioconductor
sparseMatrixStats 1.2.1 2021-02-02 [1] Bioconductor
splatter * 1.15.2 2021-04-15 [1] Bioconductor
stringi 1.5.3 2020-09-09 [1] CRAN (R 4.0.2)
stringr * 1.4.0 2019-02-10 [1] CRAN (R 4.0.2)
SummarizedExperiment * 1.20.0 2020-10-27 [1] Bioconductor
survival * 3.2-10 2021-03-16 [1] CRAN (R 4.0.4)
testthat 3.0.0 2020-10-31 [1] CRAN (R 4.0.2)
tibble * 3.1.1 2021-04-18 [1] CRAN (R 4.0.4)
tidyr * 1.1.3 2021-03-03 [1] CRAN (R 4.0.4)
tidyselect 1.1.0 2020-05-11 [1] CRAN (R 4.0.2)
tidyverse * 1.3.1 2021-04-15 [1] CRAN (R 4.0.4)
usethis 1.6.3 2020-09-17 [1] CRAN (R 4.0.2)
utf8 1.2.1 2021-03-12 [1] CRAN (R 4.0.4)
vctrs 0.3.7 2021-03-29 [1] CRAN (R 4.0.4)
vipor 0.4.5 2017-03-22 [1] CRAN (R 4.0.2)
viridis 0.6.0 2021-04-15 [1] CRAN (R 4.0.4)
viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.0.4)
whisker 0.4 2019-08-28 [1] CRAN (R 4.0.2)
withr 2.4.2 2021-04-18 [1] CRAN (R 4.0.4)
workflowr 1.6.2 2020-04-30 [1] CRAN (R 4.0.2)
xfun 0.22 2021-03-11 [1] CRAN (R 4.0.4)
xml2 1.3.2 2020-04-23 [1] CRAN (R 4.0.2)
XVector 0.30.0 2020-10-27 [1] Bioconductor
yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.2)
zlibbioc 1.36.0 2020-10-27 [1] Bioconductor
[1] /mnt/mcfiles/cazodi/R/x86_64-pc-linux-gnu-library/4.0
[2] /opt/R/4.0.4/lib/R/library