Last updated: 2021-08-31

Checks: 6 1

Knit directory: KEJP_2020_splatPop/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210215) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version dc8461b. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/10x_lung/
    Ignored:    data/ALL.chr2.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.EURO.0.99.MAF05.filtered.vcf
    Ignored:    data/D30.h5
    Ignored:    data/Diabetes/
    Ignored:    data/IBD/
    Ignored:    data/agg_10X-fibroblasts-control.rds
    Ignored:    data/agg_IBD-ss2.rds
    Ignored:    data/agg_Neuro-10x_DA.rds
    Ignored:    data/agg_NeuroSeq-10x_D11-pool6-filt.rds
    Ignored:    data/agg_NeuroSeq-10x_D11-pool6.rds
    Ignored:    data/agg_diabetes-ss2.rds
    Ignored:    data/agg_iPSC-ss2_D0.rds
    Ignored:    data/covid/
    Ignored:    data/cuomo_NeuroSeq_10x_all_sce.rds
    Ignored:    data/iPSC_eqtl-mapping/
    Ignored:    data/lung_fibrosis/
    Ignored:    data/pseudoB_IBD-ss2.rds
    Ignored:    data/pseudoB_Neuro-10x_DA.rds
    Ignored:    data/pseudoB_NeuroSeq-10x_D11-pool6-filt.rds
    Ignored:    data/pseudoB_NeuroSeq-10x_D11-pool6.rds
    Ignored:    data/pseudoB_diabetes-ss2.rds
    Ignored:    data/pseudoB_iPSC-ss2_D0.rds
    Ignored:    data/sce_10X-fibroblasts-947170.rds
    Ignored:    data/sce_10X-fibroblasts-allGenes.rds
    Ignored:    data/sce_10X-fibroblasts.rds
    Ignored:    data/sce_IBD-ss2.rds
    Ignored:    data/sce_IBD-ss2_HC2.rds
    Ignored:    data/sce_Neuro-10x.rds
    Ignored:    data/sce_Neuro-10x_2CT.rds
    Ignored:    data/sce_Neuro-10x_DA-wihj4.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6-filt-mita1FPP.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6-filt.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6-mita1FPP.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6.rds
    Ignored:    data/sce_diabetes-ss2.rds
    Ignored:    data/sce_diabetes-ss2_T2D-5.rds
    Ignored:    data/sce_iPSC-ss2_D0-allGenes.rds
    Ignored:    data/sce_iPSC-ss2_D0-joxm39.rds
    Ignored:    data/sce_iPSC-ss2_D0.rds
    Ignored:    output/00_Figures/
    Ignored:    output/01_sims/
    Ignored:    output/demo_eQTL/
    Ignored:    output/iPSC_eQTL/
    Ignored:    references/1000GP_Phase3_sample_info.txt
    Ignored:    references/Homo_sapiens.GRCh38.99.chromosome.22.gff3
    Ignored:    references/chr2.filt.2-temporary.bed
    Ignored:    references/chr2.filt.2-temporary.bim
    Ignored:    references/chr2.filt.2-temporary.fam
    Ignored:    references/chr2.filt.2.log
    Ignored:    references/chr2.filt.log
    Ignored:    references/chr2.filt.map
    Ignored:    references/chr2.filt.nosex
    Ignored:    references/chr2.filt.ped
    Ignored:    references/chr2.filt.prune.in
    Ignored:    references/chr2.filt.prune.out
    Ignored:    references/chr2.filtered.log
    Ignored:    references/chr2.filtered.nosex
    Ignored:    references/chr2.filtered.vcf
    Ignored:    references/chr2.filtered2.log
    Ignored:    references/chr2.filtered2.nosex
    Ignored:    references/chr2.filtered2.vcf
    Ignored:    references/chr2.filtered3.log
    Ignored:    references/chr2.filtered3.nosex
    Ignored:    references/chr2.filtered3.vcf
    Ignored:    references/chr2.genes.gff3
    Ignored:    references/chr2.vcf.gz
    Ignored:    references/chr22.filt.log
    Ignored:    references/chr22.filt.map
    Ignored:    references/chr22.filt.nosex
    Ignored:    references/chr22.filt.ped
    Ignored:    references/chr22.filt.prune.in
    Ignored:    references/chr22.filt.prune.out
    Ignored:    references/chr22.filtered.log
    Ignored:    references/chr22.filtered.nosex
    Ignored:    references/chr22.filtered.vcf
    Ignored:    references/chr22.filtered.vcf.bed
    Ignored:    references/chr22.filtered.vcf.bim
    Ignored:    references/chr22.filtered.vcf.fam
    Ignored:    references/chr22.filtered.vcf.log
    Ignored:    references/chr22.filtered.vcf.nosex
    Ignored:    references/chr22.filtered.vcf.rel
    Ignored:    references/chr22.filtered.vcf.rel.id
    Ignored:    references/chr22.filtered.vcf.rel_mod
    Ignored:    references/chr22.genes.gff3
    Ignored:    references/chr22.genes.gff3_annotation
    Ignored:    references/chr22.genes.gff3_chunks
    Ignored:    references/chr22.vcf.gz
    Ignored:    references/keep_samples.txt
    Ignored:    references/remove_snps.txt
    Ignored:    references/test.genome
    Ignored:    references/test.log
    Ignored:    references/test.nosex

Untracked files:
    Untracked:  .DS_Store
    Untracked:  .cache/
    Untracked:  .config/
    Untracked:  .snakemake/
    Untracked:  KEJP_2020_splatPop.Rproj
    Untracked:  analysis/misc_analysis-multichem.Rmd
    Untracked:  analysis/misc_analysis.Rmd
    Untracked:  analysis/ss2-iPSC_emp-simulation.Rmd
    Untracked:  code/splatter_1.17.2.tar.gz
    Untracked:  docs/.DS_Store

Unstaged changes:
    Modified:   .gitignore
    Modified:   .gitlab-ci.yml
    Modified:   CITATION
    Modified:   Dockerfile
    Modified:   LICENSE
    Modified:   README.md
    Modified:   _workflowr.yml
    Modified:   analysis/10x-Neuro_estimate-params.Rmd
    Modified:   analysis/Applications_DEG-analysis.Rmd
    Modified:   analysis/KEJP_iPSC-ss2.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd
    Modified:   analysis/ss2-iPSC_estimate-params.Rmd
    Modified:   analysis/ss2-iPSC_simulations.Rmd
    Modified:   cluster.json
    Modified:   code/1_process-empirical-data.R
    Modified:   code/2_estimate-splatPopParams.R
    Modified:   code/4_simulate_DEG.R
    Modified:   code/README.md
    Modified:   code/plot_functions.R
    Modified:   code/plot_functions2.R
    Modified:   data/README.md
    Modified:   docs/site_libs/anchor-sections-1.0/anchor-sections.css
    Modified:   docs/site_libs/anchor-sections-1.0/anchor-sections.js
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.css.map
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.css.map
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/cerulean.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/cosmo.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/darkly.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/flatly.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Lato.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/LatoBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/LatoItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/NewsCycle.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/NewsCycleBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSans.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansBoldItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansLightItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Raleway.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RalewayBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Roboto.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoMedium.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansPro.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Ubuntu.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/journal.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/lumen.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/paper.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/readable.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/sandstone.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/simplex.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/spacelab.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/united.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/yeti.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.eot
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.svg
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.woff
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.woff2
    Modified:   docs/site_libs/bootstrap-3.3.5/js/bootstrap.js
    Modified:   docs/site_libs/bootstrap-3.3.5/js/bootstrap.min.js
    Modified:   docs/site_libs/bootstrap-3.3.5/js/npm.js
    Modified:   docs/site_libs/bootstrap-3.3.5/shim/html5shiv.min.js
    Modified:   docs/site_libs/bootstrap-3.3.5/shim/respond.min.js
    Modified:   docs/site_libs/font-awesome-5.1.0/css/all.css
    Modified:   docs/site_libs/font-awesome-5.1.0/css/v4-shims.css
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.woff2
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.woff2
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.woff2
    Modified:   docs/site_libs/header-attrs-2.5/header-attrs.js
    Modified:   docs/site_libs/jquery-1.11.3/jquery.min.js
    Modified:   docs/site_libs/jqueryui-1.11.4/README
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_444444_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_555555_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_777620_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_777777_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_cc0000_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_ffffff_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/index.html
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.js
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.min.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.min.js
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.structure.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.structure.min.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.theme.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.theme.min.css
    Modified:   docs/site_libs/navigation-1.1/codefolding.js
    Modified:   docs/site_libs/navigation-1.1/sourceembed.js
    Modified:   docs/site_libs/navigation-1.1/tabsets.js
    Modified:   docs/site_libs/tocify-1.9.1/jquery.tocify.css
    Modified:   docs/site_libs/tocify-1.9.1/jquery.tocify.js
    Modified:   environment.yml
    Modified:   envs/limix_env.yaml
    Modified:   envs/myenv.yaml
    Modified:   org/README.md
    Modified:   org/project_management.org
    Modified:   output/README.md
    Modified:   references/README.md
    Modified:   resources/README.md
    Modified:   resources/keep_samples.txt
    Modified:   workflow/config_bp_ss2.yaml
    Modified:   workflow/sims_limix_v1.15.1.smk

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


suppressPackageStartupMessages({
  library(splatter)
  library(VariantAnnotation)
  library(tidyverse)
  library(RColorBrewer)
  library(scater)
  library(ggpubr)
  library(cowplot)
})

source("code/plot_functions.R")
source("code/misc_functions.R")
sample.colors <- projectColors("samples")
type.col <- c("#44bb99", "#aa3377")
save <- TRUE
date <- Sys.Date()
set.seed(42)

# Chromosome 22 data
gff <- read.table("references/chr22.genes.gff3", sep="\t", header=FALSE, quote="")
vcf <-  readVcf("references/chr22.filtered.vcf", "hg38")
colnames(vcf) <- gsub("_.*", "", colnames(vcf))
sampleNames <- colnames(vcf)

vcf.6 <- vcf[, sample(sampleNames, 6)]

Multi-chemistry/platform batch effects

Because splatPop is a modular and reproducible simulation framework, it is possible to simulate multiple populations of cells and merge them together to create more complex batch effects. For example, if you wanted to simulate cells sequenced using different platforms or chemistries, you could simulate the first to create a splatPop key, and then use that splatPop key as input with other splatPopParams specifying different single cell properties.

The following code demonstrates how this could be done by showing an extreme example, a simulated dataset with cells sequenced using either smartseq2 or 10x platforms. First, two separate splatPopParams objects are needed, one for each chemistry. Note that we want to make sure the pop.quant.norm parameter is set to TRUE, as we want the simulated gene means to be quantile normalized for each sample to fit the distribution of the single cell data in the respective splatPopParams object. Then we use splatPopSimulateMeans to generate the splatPop key using one of the splatPopParams objects (order does not matter), that key will be used as input for the rest of the simulations. Then, we use splatPopSimulateSC to simulate the single cells for that first splatPopParams object. Finally, for all other populations we want to simulate, we simply run splatPopSimulate (which wraps the simulate means and SC function together).

# Set up splatPopParams
paramsSS2 <- readRDS("output/01_sims/splatPop-params_iPSC-ss2_sc.rds")
params10x <- readRDS("output/01_sims/splatPop-params_Neuro-10x.rds")
paramsSS2@eqtl.coreg <- 0
params10x@eqtl.coreg <- 0
paramsSS2 <- setParams(paramsSS2, pop.quant.norm = TRUE)
params10x <- setParams(params10x, pop.quant.norm = TRUE)


sim.mean.ss2 <- splatPopSimulateMeans(vcf = vcf.6, gff = gff, 
                                      params = paramsSS2)
Simulating gene means for population...
sim.ss2 <- splatPopSimulateSC(params = paramsSS2, key=sim.mean.ss2$key, 
                              sim.means=sim.mean.ss2$means, batchCells=20,
                              sparsify = FALSE)
Simulating sc counts for Group1...
Done!
sim.ss2$Batch <- "smartseq2"
sim.10x <- splatPopSimulate(vcf = vcf.6, key=sim.mean.ss2$key, 
                            params = params10x, batchCells=20,
                            sparsify = FALSE)
Designing population...
Simulating gene means for population...
Simulating sc counts for Group1...
Done!
sim.10x$Batch <- "10x"

sim.joint <- SingleCellExperiment::cbind(sim.ss2, sim.10x)

sim.joint
class: SingleCellExperiment 
dim: 504 240 
metadata(4): Params Simulated_Means Params Simulated_Means
assays(6): BatchCellMeans BaseCellMeans ... TrueCounts counts
rownames(504): ENSG00000198355 ENSG00000100100 ... ENSG00000159958
  ENSG00000075275
rowData names(23): Row.names chromosome ... meanQuantileNorm.y
  cvQuantileNorm.y
colnames(240): NA19347:Cell1 NA19347:Cell2 ... HG00338:Cell19
  HG00338:Cell20
colData names(6): Cell Batch ... Group Condition
reducedDimNames(0):
altExpNames(0):

We can see these populations of cells are very different, which is expected given the substantial differences in the data generated by 10x and smartseq2 chemistries.

sim.joint <- logNormCounts(sim.joint)
sim.joint <- runPCA(sim.joint)

# Plots
pca.plot <- plotPCA(sim.joint, colour_by = "Sample", shape_by = "Batch", 
               theme_size=12, point_size=2)
pca.plot <- ggpar(pca.plot, palette=get_palette(sample.colors, 6), 
        legend.title=list(shape="Batch", color="Sample"), legend="bottom")
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.
gene.mean.plot <- as.data.frame(rowData(sim.joint)) %>% 
  pivot_longer(cols=c(meanSampled, meanQuantileNorm),
               names_to="Batch", values_to="gene_mean") %>% 
  mutate(Batch = gsub("meanSampled", "smartseq2", Batch),
         Batch = gsub("meanQuantileNorm", "10x", Batch)) %>%
  gghistogram(x="gene_mean", fill="Batch", palette=type.col)

sim.joint$cell_sum <- colSums(counts(sim.joint))
cell.sum.plot <- as.data.frame(colData(sim.joint)) %>%
  gghistogram(x="cell_sum", fill="Batch", palette=type.col, color=NA)

right <- plot_grid(gene.mean.plot, 
                   cell.sum.plot + theme(legend.position="none"), 
                   ncol=1, rel_heights = c(1,0.8), labels = c("b", "c"))
plot_grid(pca.plot, right, labels=c("a", ""))
Simulated cells from different chemistries. **(a)** PCA plots of cells colored by individual and shaped by chemistry batch (n=20 cells per individual per batch). The distribution of **(b)** gene mean counts and **(c)** cell count sums between the two chemistries.

Simulated cells from different chemistries. (a) PCA plots of cells colored by individual and shaped by chemistry batch (n=20 cells per individual per batch). The distribution of (b) gene mean counts and (c) cell count sums between the two chemistries.

if(save){
  save.name <- paste0(date, "_mixed-chem")
  saveRDS(sim.joint, paste0("output/01_sims/", save.name, ".rds"))
  ggsave(paste0("output/00_Figures/", save.name, ".pdf"), width = 6, height = 4)
}

devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                               
 version  R version 4.0.4 (2021-02-15)        
 os       Red Hat Enterprise Linux 8.4 (Ootpa)
 system   x86_64, linux-gnu                   
 ui       X11                                 
 language (EN)                                
 collate  en_US.UTF-8                         
 ctype    en_US.UTF-8                         
 tz       Australia/Melbourne                 
 date     2021-08-31                          

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version  date       lib source        
 abind                  1.4-5    2016-07-21 [1] CRAN (R 4.0.2)
 AnnotationDbi          1.52.0   2020-10-27 [1] Bioconductor  
 askpass                1.1      2019-01-13 [1] CRAN (R 4.0.2)
 assertthat             0.2.1    2019-03-21 [1] CRAN (R 4.0.2)
 backports              1.2.1    2020-12-09 [1] CRAN (R 4.0.4)
 beachmat               2.6.4    2020-12-20 [1] Bioconductor  
 beeswarm               0.4.0    2021-06-01 [1] CRAN (R 4.0.4)
 Biobase              * 2.50.0   2020-10-27 [1] Bioconductor  
 BiocFileCache          1.14.0   2020-10-27 [1] Bioconductor  
 BiocGenerics         * 0.36.1   2021-04-16 [1] Bioconductor  
 BiocNeighbors          1.8.2    2020-12-07 [1] Bioconductor  
 BiocParallel           1.24.1   2020-11-06 [1] Bioconductor  
 BiocSingular           1.6.0    2020-10-27 [1] Bioconductor  
 biomaRt                2.46.3   2021-02-09 [1] Bioconductor  
 Biostrings           * 2.58.0   2020-10-27 [1] Bioconductor  
 bit                    4.0.4    2020-08-04 [1] CRAN (R 4.0.2)
 bit64                  4.0.5    2020-08-30 [1] CRAN (R 4.0.2)
 bitops                 1.0-7    2021-04-24 [1] CRAN (R 4.0.4)
 blob                   1.2.2    2021-07-23 [1] CRAN (R 4.0.4)
 broom                  0.7.9    2021-07-27 [1] CRAN (R 4.0.4)
 BSgenome               1.58.0   2020-10-27 [1] Bioconductor  
 bslib                  0.2.5.1  2021-05-18 [1] CRAN (R 4.0.4)
 cachem                 1.0.6    2021-08-19 [1] CRAN (R 4.0.4)
 callr                  3.7.0    2021-04-20 [1] CRAN (R 4.0.4)
 car                    3.0-11   2021-06-27 [1] CRAN (R 4.0.4)
 carData                3.0-4    2020-05-22 [1] CRAN (R 4.0.2)
 cellranger             1.1.0    2016-07-27 [1] CRAN (R 4.0.2)
 checkmate              2.0.0    2020-02-06 [1] CRAN (R 4.0.2)
 cli                    3.0.1    2021-07-17 [1] CRAN (R 4.0.4)
 colorspace             2.0-2    2021-06-24 [1] CRAN (R 4.0.4)
 cowplot              * 1.1.1    2020-12-30 [1] CRAN (R 4.0.4)
 crayon                 1.4.1    2021-02-08 [1] CRAN (R 4.0.4)
 curl                   4.3.2    2021-06-23 [1] CRAN (R 4.0.4)
 data.table             1.14.0   2021-02-21 [1] CRAN (R 4.0.4)
 DBI                    1.1.1    2021-01-15 [1] CRAN (R 4.0.4)
 dbplyr                 2.1.1    2021-04-06 [1] CRAN (R 4.0.4)
 DelayedArray           0.16.3   2021-03-24 [1] Bioconductor  
 DelayedMatrixStats     1.12.3   2021-02-03 [1] Bioconductor  
 desc                   1.3.0    2021-03-05 [1] CRAN (R 4.0.4)
 devtools               2.4.2    2021-06-07 [1] CRAN (R 4.0.4)
 digest                 0.6.27   2020-10-24 [1] CRAN (R 4.0.2)
 dplyr                * 1.0.7    2021-06-18 [1] CRAN (R 4.0.4)
 ellipsis               0.3.2    2021-04-29 [1] CRAN (R 4.0.4)
 evaluate               0.14     2019-05-28 [1] CRAN (R 4.0.2)
 fansi                  0.5.0    2021-05-25 [1] CRAN (R 4.0.4)
 farver                 2.1.0    2021-02-28 [1] CRAN (R 4.0.4)
 fastmap                1.1.0    2021-01-25 [1] CRAN (R 4.0.3)
 forcats              * 0.5.1    2021-01-27 [1] CRAN (R 4.0.4)
 foreign                0.8-81   2020-12-22 [2] CRAN (R 4.0.4)
 fs                     1.5.0    2020-07-31 [1] CRAN (R 4.0.2)
 generics               0.1.0    2020-10-31 [1] CRAN (R 4.0.2)
 GenomeInfoDb         * 1.26.7   2021-04-08 [1] Bioconductor  
 GenomeInfoDbData       1.2.4    2020-11-10 [1] Bioconductor  
 GenomicAlignments      1.26.0   2020-10-27 [1] Bioconductor  
 GenomicFeatures        1.42.3   2021-04-01 [1] Bioconductor  
 GenomicRanges        * 1.42.0   2020-10-27 [1] Bioconductor  
 ggbeeswarm             0.6.0    2017-08-07 [1] CRAN (R 4.0.2)
 ggplot2              * 3.3.5    2021-06-25 [1] CRAN (R 4.0.4)
 ggpubr               * 0.4.0    2020-06-27 [1] CRAN (R 4.0.3)
 ggsignif               0.6.2    2021-06-14 [1] CRAN (R 4.0.4)
 git2r                  0.28.0   2021-01-10 [1] CRAN (R 4.0.4)
 glue                   1.4.2    2020-08-27 [1] CRAN (R 4.0.2)
 gridExtra              2.3      2017-09-09 [1] CRAN (R 4.0.2)
 gtable                 0.3.0    2019-03-25 [1] CRAN (R 4.0.2)
 haven                  2.4.3    2021-08-04 [1] CRAN (R 4.0.4)
 highr                  0.9      2021-04-16 [1] CRAN (R 4.0.4)
 hms                    1.1.0    2021-05-17 [1] CRAN (R 4.0.4)
 htmltools              0.5.2    2021-08-25 [1] CRAN (R 4.0.4)
 httpuv                 1.6.2    2021-08-18 [1] CRAN (R 4.0.4)
 httr                   1.4.2    2020-07-20 [1] CRAN (R 4.0.2)
 IRanges              * 2.24.1   2020-12-12 [1] Bioconductor  
 irlba                  2.3.3    2019-02-05 [1] CRAN (R 4.0.2)
 jquerylib              0.1.4    2021-04-26 [1] CRAN (R 4.0.4)
 jsonlite               1.7.2    2020-12-09 [1] CRAN (R 4.0.4)
 knitr                  1.33     2021-04-24 [1] CRAN (R 4.0.4)
 labeling               0.4.2    2020-10-20 [1] CRAN (R 4.0.2)
 later                  1.3.0    2021-08-18 [1] CRAN (R 4.0.4)
 lattice                0.20-41  2020-04-02 [2] CRAN (R 4.0.4)
 lifecycle              1.0.0    2021-02-15 [1] CRAN (R 4.0.4)
 locfit                 1.5-9.4  2020-03-25 [1] CRAN (R 4.0.2)
 lubridate              1.7.10   2021-02-26 [1] CRAN (R 4.0.4)
 magrittr               2.0.1    2020-11-17 [1] CRAN (R 4.0.3)
 Matrix                 1.3-4    2021-06-01 [1] CRAN (R 4.0.4)
 MatrixGenerics       * 1.2.1    2021-01-30 [1] Bioconductor  
 matrixStats          * 0.60.0   2021-07-26 [1] CRAN (R 4.0.4)
 memoise                2.0.0    2021-01-26 [1] CRAN (R 4.0.4)
 modelr                 0.1.8    2020-05-19 [1] CRAN (R 4.0.2)
 munsell                0.5.0    2018-06-12 [1] CRAN (R 4.0.2)
 openssl                1.4.4    2021-04-30 [1] CRAN (R 4.0.4)
 openxlsx               4.2.4    2021-06-16 [1] CRAN (R 4.0.4)
 pillar                 1.6.2    2021-07-29 [1] CRAN (R 4.0.4)
 pkgbuild               1.2.0    2020-12-15 [1] CRAN (R 4.0.4)
 pkgconfig              2.0.3    2019-09-22 [1] CRAN (R 4.0.2)
 pkgload                1.2.1    2021-04-06 [1] CRAN (R 4.0.4)
 preprocessCore         1.52.1   2021-01-08 [1] Bioconductor  
 prettyunits            1.1.1    2020-01-24 [1] CRAN (R 4.0.2)
 processx               3.5.2    2021-04-30 [1] CRAN (R 4.0.4)
 progress               1.2.2    2019-05-16 [1] CRAN (R 4.0.2)
 promises               1.2.0.1  2021-02-11 [1] CRAN (R 4.0.4)
 ps                     1.6.0    2021-02-28 [1] CRAN (R 4.0.4)
 purrr                * 0.3.4    2020-04-17 [1] CRAN (R 4.0.2)
 R6                     2.5.1    2021-08-19 [1] CRAN (R 4.0.4)
 rappdirs               0.3.3    2021-01-31 [1] CRAN (R 4.0.4)
 RColorBrewer         * 1.1-2    2014-12-07 [1] CRAN (R 4.0.2)
 Rcpp                   1.0.7    2021-07-07 [1] CRAN (R 4.0.4)
 RCurl                  1.98-1.4 2021-08-17 [1] CRAN (R 4.0.4)
 readr                * 2.0.1    2021-08-10 [1] CRAN (R 4.0.4)
 readxl                 1.3.1    2019-03-13 [1] CRAN (R 4.0.2)
 remotes                2.4.0    2021-06-02 [1] CRAN (R 4.0.4)
 reprex                 2.0.1    2021-08-05 [1] CRAN (R 4.0.4)
 rio                    0.5.27   2021-06-21 [1] CRAN (R 4.0.4)
 rlang                  0.4.11   2021-04-30 [1] CRAN (R 4.0.4)
 rmarkdown              2.10     2021-08-06 [1] CRAN (R 4.0.4)
 rprojroot              2.0.2    2020-11-15 [1] CRAN (R 4.0.3)
 Rsamtools            * 2.6.0    2020-10-27 [1] Bioconductor  
 RSQLite                2.2.8    2021-08-21 [1] CRAN (R 4.0.4)
 rstatix                0.7.0    2021-02-13 [1] CRAN (R 4.0.4)
 rstudioapi             0.13     2020-11-12 [1] CRAN (R 4.0.3)
 rsvd                   1.0.5    2021-04-16 [1] CRAN (R 4.0.4)
 rtracklayer            1.50.0   2020-10-27 [1] Bioconductor  
 rvest                  1.0.1    2021-07-26 [1] CRAN (R 4.0.4)
 S4Vectors            * 0.28.1   2020-12-09 [1] Bioconductor  
 sass                   0.4.0    2021-05-12 [1] CRAN (R 4.0.4)
 scales                 1.1.1    2020-05-11 [1] CRAN (R 4.0.2)
 scater               * 1.18.6   2021-02-26 [1] Bioconductor  
 scuttle                1.0.4    2020-12-17 [1] Bioconductor  
 sessioninfo            1.1.1    2018-11-05 [1] CRAN (R 4.0.2)
 SingleCellExperiment * 1.12.0   2020-10-27 [1] Bioconductor  
 sparseMatrixStats      1.2.1    2021-02-02 [1] Bioconductor  
 splatter             * 1.17.2   2021-08-26 [1] Bioconductor  
 stringi                1.7.3    2021-07-16 [1] CRAN (R 4.0.4)
 stringr              * 1.4.0    2019-02-10 [1] CRAN (R 4.0.2)
 SummarizedExperiment * 1.20.0   2020-10-27 [1] Bioconductor  
 testthat               3.0.4    2021-07-01 [1] CRAN (R 4.0.4)
 tibble               * 3.1.3    2021-07-23 [1] CRAN (R 4.0.4)
 tidyr                * 1.1.3    2021-03-03 [1] CRAN (R 4.0.4)
 tidyselect             1.1.1    2021-04-30 [1] CRAN (R 4.0.4)
 tidyverse            * 1.3.1    2021-04-15 [1] CRAN (R 4.0.4)
 tzdb                   0.1.2    2021-07-20 [1] CRAN (R 4.0.4)
 usethis                2.0.1    2021-02-10 [1] CRAN (R 4.0.4)
 utf8                   1.2.2    2021-07-24 [1] CRAN (R 4.0.4)
 VariantAnnotation    * 1.36.0   2020-10-27 [1] Bioconductor  
 vctrs                  0.3.8    2021-04-29 [1] CRAN (R 4.0.4)
 vipor                  0.4.5    2017-03-22 [1] CRAN (R 4.0.2)
 viridis                0.6.1    2021-05-11 [1] CRAN (R 4.0.4)
 viridisLite            0.4.0    2021-04-13 [1] CRAN (R 4.0.4)
 withr                  2.4.2    2021-04-18 [1] CRAN (R 4.0.4)
 workflowr              1.6.2    2020-04-30 [1] CRAN (R 4.0.2)
 xfun                   0.25     2021-08-06 [1] CRAN (R 4.0.4)
 XML                    3.99-0.7 2021-08-17 [1] CRAN (R 4.0.4)
 xml2                   1.3.2    2020-04-23 [1] CRAN (R 4.0.2)
 XVector              * 0.30.0   2020-10-27 [1] Bioconductor  
 yaml                   2.2.1    2020-02-01 [1] CRAN (R 4.0.2)
 zip                    2.2.0    2021-05-31 [1] CRAN (R 4.0.4)
 zlibbioc               1.36.0   2020-10-27 [1] Bioconductor  

[1] /mnt/mcfiles/cazodi/R/x86_64-pc-linux-gnu-library/4.0
[2] /opt/R/4.0.4/lib/R/library