Last updated: 2021-05-13

Checks: 6 1

Knit directory: KEJP_2020_splatPop/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210215) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b1e4853. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/ALL.chr2.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.EURO.0.99.MAF05.filtered.vcf
    Ignored:    data/D30.h5
    Ignored:    data/Diabetes/
    Ignored:    data/IBD/
    Ignored:    data/agg_IBD-ss2.rds
    Ignored:    data/agg_Neuro-10x_DA.rds
    Ignored:    data/agg_NeuroSeq-10x_D11-pool6-filt.rds
    Ignored:    data/agg_NeuroSeq-10x_D11-pool6.rds
    Ignored:    data/agg_diabetes-ss2.rds
    Ignored:    data/agg_iPSC-ss2_D0.rds
    Ignored:    data/covid/
    Ignored:    data/cuomo_NeuroSeq_10x_all_sce.rds
    Ignored:    data/pseudoB_IBD-ss2.rds
    Ignored:    data/pseudoB_Neuro-10x_DA.rds
    Ignored:    data/pseudoB_NeuroSeq-10x_D11-pool6-filt.rds
    Ignored:    data/pseudoB_NeuroSeq-10x_D11-pool6.rds
    Ignored:    data/pseudoB_diabetes-ss2.rds
    Ignored:    data/pseudoB_iPSC-ss2_D0.rds
    Ignored:    data/sce_IBD-ss2.rds
    Ignored:    data/sce_IBD-ss2_HC2.rds
    Ignored:    data/sce_Neuro-10x.rds
    Ignored:    data/sce_Neuro-10x_2CT.rds
    Ignored:    data/sce_Neuro-10x_DA-wihj4.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6-filt-mita1FPP.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6-filt.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6-mita1FPP.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6.rds
    Ignored:    data/sce_diabetes-ss2.rds
    Ignored:    data/sce_diabetes-ss2_T2D-5.rds
    Ignored:    data/sce_iPSC-ss2_D0-joxm39.rds
    Ignored:    data/sce_iPSC-ss2_D0.rds
    Ignored:    output/00_Figures/
    Ignored:    output/01_sims/
    Ignored:    output/demo_eQTL/
    Ignored:    references/1000GP_Phase3_sample_info.txt
    Ignored:    references/Homo_sapiens.GRCh38.99.chromosome.22.gff3
    Ignored:    references/chr2.filt.2-temporary.bed
    Ignored:    references/chr2.filt.2-temporary.bim
    Ignored:    references/chr2.filt.2-temporary.fam
    Ignored:    references/chr2.filt.2.log
    Ignored:    references/chr2.filt.log
    Ignored:    references/chr2.filt.map
    Ignored:    references/chr2.filt.nosex
    Ignored:    references/chr2.filt.ped
    Ignored:    references/chr2.filt.prune.in
    Ignored:    references/chr2.filt.prune.out
    Ignored:    references/chr2.filtered.log
    Ignored:    references/chr2.filtered.nosex
    Ignored:    references/chr2.filtered.vcf
    Ignored:    references/chr2.filtered2.log
    Ignored:    references/chr2.filtered2.nosex
    Ignored:    references/chr2.filtered2.vcf
    Ignored:    references/chr2.filtered3.log
    Ignored:    references/chr2.filtered3.nosex
    Ignored:    references/chr2.filtered3.vcf
    Ignored:    references/chr2.genes.gff3
    Ignored:    references/chr2.vcf.gz
    Ignored:    references/chr22.filt.log
    Ignored:    references/chr22.filt.map
    Ignored:    references/chr22.filt.nosex
    Ignored:    references/chr22.filt.ped
    Ignored:    references/chr22.filt.prune.in
    Ignored:    references/chr22.filt.prune.out
    Ignored:    references/chr22.filtered.log
    Ignored:    references/chr22.filtered.nosex
    Ignored:    references/chr22.filtered.vcf
    Ignored:    references/chr22.filtered.vcf.bed
    Ignored:    references/chr22.filtered.vcf.bim
    Ignored:    references/chr22.filtered.vcf.fam
    Ignored:    references/chr22.filtered.vcf.log
    Ignored:    references/chr22.filtered.vcf.nosex
    Ignored:    references/chr22.filtered.vcf.rel
    Ignored:    references/chr22.filtered.vcf.rel.id
    Ignored:    references/chr22.filtered.vcf.rel_mod
    Ignored:    references/chr22.genes.gff3
    Ignored:    references/chr22.genes.gff3_annotation
    Ignored:    references/chr22.genes.gff3_chunks
    Ignored:    references/chr22.vcf.gz
    Ignored:    references/keep_samples.txt
    Ignored:    references/remove_snps.txt
    Ignored:    references/test.log
    Ignored:    references/test.nosex

Untracked files:
    Untracked:  .DS_Store
    Untracked:  .cache/
    Untracked:  .config/
    Untracked:  .snakemake/
    Untracked:  KEJP_2020_splatPop.Rproj
    Untracked:  analysis/10x-Neuro_simulations.Rmd
    Untracked:  analysis/Applications_eQTL-mapping.Rmd
    Untracked:  analysis/figure/
    Untracked:  code/misc_functions.R
    Untracked:  code/plot_functions2.R
    Untracked:  code/sc_aggregate.R
    Untracked:  docs/
    Untracked:  envs/limix_env.yaml
    Untracked:  mod
    Untracked:  resources/keep_samples.txt
    Untracked:  tmp.txt
    Untracked:  workflow/

Unstaged changes:
    Modified:   .gitignore
    Modified:   .gitlab-ci.yml
    Modified:   CITATION
    Modified:   Dockerfile
    Modified:   LICENSE
    Modified:   README.md
    Modified:   _workflowr.yml
    Modified:   analysis/10x-Neuro_estimate-params.Rmd
    Modified:   analysis/KEJP_iPSC-ss2.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd
    Modified:   analysis/ss2-iPSC_estimate-params.Rmd
    Modified:   analysis/ss2-iPSC_simulations.Rmd
    Modified:   cluster.json
    Modified:   code/1_process-empirical-data.R
    Modified:   code/2_estimate-splatPopParams.R
    Modified:   code/4_simulate_DEG.R
    Modified:   code/README.md
    Modified:   code/plot_functions.R
    Modified:   data/README.md
    Modified:   environment.yml
    Modified:   envs/myenv.yaml
    Modified:   org/README.md
    Modified:   org/project_management.org
    Modified:   output/README.md
    Modified:   references/README.md
    Modified:   resources/README.md

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ss2-iPSC_estimate-params.Rmd) and HTML (public/ss2-iPSC_estimate-params.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd b1e4853 cazodi 2021-03-16 update plot functions
Rmd ae3af3e cazodi 2021-03-10 update simple ss2 ipsc sim
html ae3af3e cazodi 2021-03-10 update simple ss2 ipsc sim
Rmd d24c101 cazodi 2021-02-17 ipsc ss2 preprocessing
html d24c101 cazodi 2021-02-17 ipsc ss2 preprocessing

suppressPackageStartupMessages({
  library(data.table)
  library(SingleCellExperiment)
  library(scater)
  library(tidyverse)
  library(Matrix)
  library(splatter)
  library(fitdistrplus)
})
set.seed(42)
n.genes <- 504
save <- TRUE

Process empirical data

The empirical data and the preprocessing performed is described in Cuomo et al., 2020. The processed data is available for download at Zenodo. The iPSC lines were multiplexed into 24 experimental pools (4-6 lines in each pool) and single cells were sequenced using the Smart-Seq2 protocol. Cells were assigned to their donor of origin using Cardelino. Here, we include only day0 cells (i.e. iPSC stage) that were successfully assigned to a donor and passed donor- and cell-level QC described below.

Snapshot of iPSC-ss2 reference data:

# Convert to SCE object
meta.loc <- "/mnt/mcfiles/Datasets/single-cell-data/cuomo_iPSC_endoderm/cell_metadata_cols.tsv"
counts.loc <- "/mnt/mcfiles/Datasets/single-cell-data/cuomo_iPSC_endoderm/counts.tsv"
meta <- read.csv(meta.loc, sep="\t", header=TRUE)
meta$X <- NULL
counts <- fread(counts.loc, sep="\t", header=TRUE)
counts <- as.data.frame(counts)
row.names(counts) <- counts$GeneID
counts$GeneID <- NULL
sce.ss <- SingleCellExperiment(assays = list(counts = counts),
                               colData = meta)
rm(counts)

# Standardize col data names
colnames(colData(sce.ss))[colnames(colData(sce.ss)) == "experiment"] <- "Batch"
colnames(colData(sce.ss))[colnames(colData(sce.ss)) == "donor"] <- "Sample"
sce.ss$donor_exp <- paste(sce.ss$Sample, sce.ss$Batch, sep="_")

sce.ss <- subset(sce.ss, , (day == "day0"))
sce.ss <- sce.ss[sample(rownames(sce.ss), n.genes), ]
if(save){ saveRDS(sce.ss, file = "data/sce_iPSC-ss2_D0.rds") }

# Aggregate into population wide data
keepSamples <- names(table(sce.ss$Sample)[table(sce.ss$Sample) > 100])
sce.100 <- subset(sce.ss, , Sample %in% keepSamples)
agg.ss <- aggregateAcrossCells(sce.100, ids = sce.100$donor_exp, statistics="mean")
pb.ss <- aggregateAcrossCells(sce.100, ids = sce.100$donor_exp, statistics="sum")

if(save){
  saveRDS(agg.ss, file = "data/agg_iPSC-ss2_D0.rds")
  saveRDS(pb.ss, file = "data/pseudoB_iPSC-ss2_D0.rds")
}

sce.ss
class: SingleCellExperiment 
dim: 504 9661 
metadata(0):
assays(1): counts
rownames(504): ENSG00000110066_SUV420H1 ENSG00000128045_RASL11B ...
  ENSG00000160326_SLC2A6 ENSG00000167528_ZNF641
rowData names(0):
colnames(9661): 21672_1#101 21672_1#102 ... 24475_8#96 24475_8#98
colData names(94): assigned auxDir ... princ_curve_scaled01 donor_exp
reducedDimNames(0):
altExpNames(0):
counts(sce.ss[1:5,1:5])
                         21672_1#101 21672_1#102 21672_1#103 21672_1#104
ENSG00000110066_SUV420H1   1.4547171   1.3348227  2.25280087  3.93828400
ENSG00000128045_RASL11B    6.4995706   6.4622821  4.85403378  4.02948001
ENSG00000107186_MPDZ       0.0000000   1.2726227  0.99701653  1.12888160
ENSG00000139437_TCHP       0.1073557   2.8248941  0.04746060  0.00000000
ENSG00000083290_ULK2       0.3624107   0.0494878  0.01252976  0.02203401
                         21672_1#105
ENSG00000110066_SUV420H1  2.31723710
ENSG00000128045_RASL11B   5.37921226
ENSG00000107186_MPDZ      2.51720554
ENSG00000139437_TCHP      0.09386073
ENSG00000083290_ULK2      0.24289306

Samples with the most cells (use joxm):

# SCE for donor-experiment with most cells (joxm from exp_39)
n.samples <- sort(table(sce.ss$donor_exp), decreasing=TRUE)[1:5]
sce.ss.joxm39 <- subset(sce.ss, , donor_exp == "joxm_expt_39")

if(save){ saveRDS(sce.ss.joxm39, file = "data/sce_iPSC-ss2_D0-joxm39.rds") }

n.samples

joxm_expt_39 sojd_expt_38 letw_expt_28 nudd_expt_34 yelp_expt_43 
         383          321          232          178          174 

Estimate splatPop parameters

Single-cell parameters are estimated from scRNA-seq data from cells from the donor with the most cells (joxm in experiment 39) using 1255 randomly selected genes. Down-sampling the number of genes to match the number of genes we will simulate ensures the estimated library size parameters reflect real data.

Population parameters are estimated from either mean aggregated or pseudo-bulked (i.e. sum aggregated) scRNA-seq data. When mean aggregation is used we set pop.quant.norm to False because quantile normalization is not needed.

Parameters estimated for ss2-iPSC:

params <- newSplatPopParams(pop.cv.bins = 50)

# Estimate params from single-cell population-scale data 
params.ss2.sc <- splatPopEstimate(params = params, 
                                  counts = as.matrix(counts(sce.ss.joxm39)),
                                  means = as.matrix(counts(agg.ss)))
params.ss2.sc <- setParams(params.ss2.sc, pop.quant.norm = FALSE)


# Estimate params from pseudo-bulk population-scale data 
params.ss2.psuB <- splatPopEstimate(params = params, 
                                    counts = as.matrix(counts(sce.ss.joxm39)),
                                    means = as.matrix(counts(pb.ss)))

# Save parameter files
if(save){
  saveRDS(params.ss2.sc, file = "output/01_sims/splatPop-params_iPSC-ss2_sc.rds")
  saveRDS(params.ss2.psuB, file = "output/01_sims/splatPop-params_iPSC-ss2_psudoB.rds")
}

params.ss2.sc
A Params object of class SplatPopParams 
Parameters can be (estimable) or [not estimable], 'Default' or  'NOT DEFAULT' 
Secondary parameters are usually set during simulation

Global: 
(GENES)  (CELLS)   [Seed] 
    504      383   617511 

53 additional parameters 

Batches: 
    [BATCHES]  [BATCH CELLS]     [Location]        [Scale]       [Remove] 
            1            383            0.1            0.1          FALSE 

Mean: 
           (RATE)            (SHAPE) 
0.649032851154963   2.04892069999893 

Library size: 
        (LOCATION)             (SCALE)              (Norm) 
  7.34174641600733  0.0470967865430461               FALSE 

Exprs outliers: 
(PROBABILITY)     (Location)        (Scale) 
            0              4            0.5 

Groups: 
     [Groups]  [Group Probs] 
            1              1 

Diff expr: 
[Probability]    [Down Prob]     [Location]        [Scale] 
          0.1            0.5            0.1            0.4 

BCV: 
   (COMMON DISP)             (DOF) 
 0.1000244140625  10.4660831656687 

Dropout: 
            [Type]          (MIDPOINT)             (SHAPE) 
              none  -0.127652372689195   -1.64027326023482 

Paths: 
        [From]         [Steps]          [Skew]    [Non-linear]  [Sigma Factor] 
             0             100             0.5             0.1             0.8 

Population params: 
      (MEAN.SHAPE)         (MEAN.RATE)    [POP.QUANT.NORM]  [similarity.scale] 
  1.91469187560408   0.623241597574194               FALSE                   1 
      [batch.size]     [nCells.sample]      [nCells.shape]       [nCells.rate] 
                10               FALSE                 1.5               0.015 
         [CV.BINS] 
                50 

(CV.PARAMS)
data.frame (50 x 4) with columns: start, end, shape, rate 
  start   end     shape      rate
1 0.000 0.238  8.491719  11.80614
2 0.238 0.513 56.190528 128.01391
3 0.513 0.585 82.076840 212.75538
4 0.585 0.684 35.909855 107.69844
# ... with 46 more rows

eQTL params: 
                 [eqtl.n]                [eqtl.dist] 
                      0.5                      1e+06 
           [eqtl.maf.min]             [eqtl.maf.max] 
                     0.05                        0.5 
    [eqtl.group.specific]  [eqtl.condition.specific] 
                      0.2                        0.2 
          (eqtl.ES.shape)             (eqtl.ES.rate) 
                      3.6                         12 

Condition params: 
   [nConditions]  [condition.prob]        [cde.prob]    [cde.downProb] 
               1                 1               0.1               0.5 
    [cde.facLoc]    [cde.facScale] 
             0.1               0.4 

devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                       
 version  R version 4.0.4 (2021-02-15)
 os       Red Hat Enterprise Linux    
 system   x86_64, linux-gnu           
 ui       X11                         
 language (EN)                        
 collate  en_US.UTF-8                 
 ctype    en_US.UTF-8                 
 tz       Australia/Melbourne         
 date     2021-05-13                  

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version  date       lib source        
 assertthat             0.2.1    2019-03-21 [1] CRAN (R 4.0.2)
 backports              1.2.0    2020-11-02 [1] CRAN (R 4.0.2)
 beachmat               2.6.4    2020-12-20 [1] Bioconductor  
 beeswarm               0.3.1    2021-03-07 [1] CRAN (R 4.0.4)
 Biobase              * 2.50.0   2020-10-27 [1] Bioconductor  
 BiocGenerics         * 0.36.1   2021-04-16 [1] Bioconductor  
 BiocNeighbors          1.8.2    2020-12-07 [1] Bioconductor  
 BiocParallel           1.24.1   2020-11-06 [1] Bioconductor  
 BiocSingular           1.6.0    2020-10-27 [1] Bioconductor  
 bitops                 1.0-7    2021-04-24 [1] CRAN (R 4.0.4)
 broom                  0.7.6    2021-04-05 [1] CRAN (R 4.0.4)
 bslib                  0.2.4    2021-01-25 [1] CRAN (R 4.0.3)
 cachem                 1.0.4    2021-02-13 [1] CRAN (R 4.0.3)
 callr                  3.7.0    2021-04-20 [1] CRAN (R 4.0.4)
 cellranger             1.1.0    2016-07-27 [1] CRAN (R 4.0.2)
 checkmate              2.0.0    2020-02-06 [1] CRAN (R 4.0.2)
 cli                    2.4.0    2021-04-05 [1] CRAN (R 4.0.4)
 colorspace             2.0-0    2020-11-11 [1] CRAN (R 4.0.2)
 crayon                 1.4.1    2021-02-08 [1] CRAN (R 4.0.4)
 data.table           * 1.13.2   2020-10-19 [1] CRAN (R 4.0.2)
 DBI                    1.1.1    2021-01-15 [1] CRAN (R 4.0.4)
 dbplyr                 2.1.1    2021-04-06 [1] CRAN (R 4.0.4)
 DelayedArray           0.16.0   2020-10-27 [1] Bioconductor  
 DelayedMatrixStats     1.12.3   2021-02-03 [1] Bioconductor  
 desc                   1.3.0    2021-03-05 [1] CRAN (R 4.0.4)
 devtools               2.3.2    2020-09-18 [1] CRAN (R 4.0.2)
 digest                 0.6.27   2020-10-24 [1] CRAN (R 4.0.2)
 dplyr                * 1.0.5    2021-03-05 [1] CRAN (R 4.0.4)
 edgeR                  3.32.1   2021-01-14 [1] Bioconductor  
 ellipsis               0.3.1    2020-05-15 [1] CRAN (R 4.0.2)
 evaluate               0.14     2019-05-28 [1] CRAN (R 4.0.2)
 fansi                  0.4.2    2021-01-15 [1] CRAN (R 4.0.4)
 fastmap                1.1.0    2021-01-25 [1] CRAN (R 4.0.3)
 fitdistrplus         * 1.1-3    2020-12-05 [1] CRAN (R 4.0.3)
 forcats              * 0.5.1    2021-01-27 [1] CRAN (R 4.0.4)
 fs                     1.5.0    2020-07-31 [1] CRAN (R 4.0.2)
 generics               0.1.0    2020-10-31 [1] CRAN (R 4.0.2)
 GenomeInfoDb         * 1.26.7   2021-04-08 [1] Bioconductor  
 GenomeInfoDbData       1.2.4    2020-11-10 [1] Bioconductor  
 GenomicRanges        * 1.42.0   2020-10-27 [1] Bioconductor  
 ggbeeswarm             0.6.0    2017-08-07 [1] CRAN (R 4.0.2)
 ggplot2              * 3.3.3    2020-12-30 [1] CRAN (R 4.0.4)
 git2r                  0.28.0   2021-01-10 [1] CRAN (R 4.0.4)
 glue                   1.4.2    2020-08-27 [1] CRAN (R 4.0.2)
 gridExtra              2.3      2017-09-09 [1] CRAN (R 4.0.2)
 gtable                 0.3.0    2019-03-25 [1] CRAN (R 4.0.2)
 haven                  2.4.0    2021-04-14 [1] CRAN (R 4.0.4)
 hms                    1.0.0    2021-01-13 [1] CRAN (R 4.0.4)
 htmltools              0.5.1.1  2021-01-22 [1] CRAN (R 4.0.3)
 httpuv                 1.5.5    2021-01-13 [1] CRAN (R 4.0.4)
 httr                   1.4.2    2020-07-20 [1] CRAN (R 4.0.2)
 IRanges              * 2.24.0   2020-10-27 [1] Bioconductor  
 irlba                  2.3.3    2019-02-05 [1] CRAN (R 4.0.2)
 jquerylib              0.1.3    2020-12-17 [1] CRAN (R 4.0.3)
 jsonlite               1.7.2    2020-12-09 [1] CRAN (R 4.0.4)
 knitr                  1.32     2021-04-14 [1] CRAN (R 4.0.4)
 later                  1.1.0.1  2020-06-05 [1] CRAN (R 4.0.2)
 lattice                0.20-41  2020-04-02 [2] CRAN (R 4.0.4)
 lifecycle              1.0.0    2021-02-15 [1] CRAN (R 4.0.4)
 limma                  3.46.0   2020-10-27 [1] Bioconductor  
 locfit                 1.5-9.4  2020-03-25 [1] CRAN (R 4.0.2)
 lubridate              1.7.10   2021-02-26 [1] CRAN (R 4.0.4)
 magrittr               2.0.1    2020-11-17 [1] CRAN (R 4.0.3)
 MASS                 * 7.3-53.1 2021-02-12 [1] CRAN (R 4.0.4)
 Matrix               * 1.3-2    2021-01-06 [1] CRAN (R 4.0.2)
 MatrixGenerics       * 1.2.0    2020-10-27 [1] Bioconductor  
 matrixStats          * 0.57.0   2020-09-25 [1] CRAN (R 4.0.2)
 memoise                2.0.0    2021-01-26 [1] CRAN (R 4.0.4)
 modelr                 0.1.8    2020-05-19 [1] CRAN (R 4.0.2)
 munsell                0.5.0    2018-06-12 [1] CRAN (R 4.0.2)
 pillar                 1.6.0    2021-04-13 [1] CRAN (R 4.0.4)
 pkgbuild               1.2.0    2020-12-15 [1] CRAN (R 4.0.4)
 pkgconfig              2.0.3    2019-09-22 [1] CRAN (R 4.0.2)
 pkgload                1.2.1    2021-04-06 [1] CRAN (R 4.0.4)
 prettyunits            1.1.1    2020-01-24 [1] CRAN (R 4.0.2)
 processx               3.5.1    2021-04-04 [1] CRAN (R 4.0.4)
 promises               1.2.0.1  2021-02-11 [1] CRAN (R 4.0.4)
 ps                     1.6.0    2021-02-28 [1] CRAN (R 4.0.4)
 purrr                * 0.3.4    2020-04-17 [1] CRAN (R 4.0.2)
 R6                     2.5.0    2020-10-28 [1] CRAN (R 4.0.2)
 Rcpp                   1.0.6    2021-01-15 [1] CRAN (R 4.0.4)
 RCurl                  1.98-1.3 2021-03-16 [1] CRAN (R 4.0.4)
 readr                * 1.4.0    2020-10-05 [1] CRAN (R 4.0.2)
 readxl                 1.3.1    2019-03-13 [1] CRAN (R 4.0.2)
 remotes                2.3.0    2021-04-01 [1] CRAN (R 4.0.4)
 reprex                 2.0.0    2021-04-02 [1] CRAN (R 4.0.4)
 rlang                  0.4.10   2020-12-30 [1] CRAN (R 4.0.4)
 rmarkdown              2.7      2021-02-19 [1] CRAN (R 4.0.4)
 rprojroot              2.0.2    2020-11-15 [1] CRAN (R 4.0.3)
 rstudioapi             0.13     2020-11-12 [1] CRAN (R 4.0.3)
 rsvd                   1.0.5    2021-04-16 [1] CRAN (R 4.0.4)
 rvest                  1.0.0    2021-03-09 [1] CRAN (R 4.0.4)
 S4Vectors            * 0.28.0   2020-10-27 [1] Bioconductor  
 sass                   0.3.1    2021-01-24 [1] CRAN (R 4.0.3)
 scales                 1.1.1    2020-05-11 [1] CRAN (R 4.0.2)
 scater               * 1.18.6   2021-02-26 [1] Bioconductor  
 scuttle                1.0.3    2020-11-23 [1] Bioconductor  
 sessioninfo            1.1.1    2018-11-05 [1] CRAN (R 4.0.2)
 SingleCellExperiment * 1.12.0   2020-10-27 [1] Bioconductor  
 sparseMatrixStats      1.2.1    2021-02-02 [1] Bioconductor  
 splatter             * 1.15.2   2021-04-15 [1] Bioconductor  
 stringi                1.5.3    2020-09-09 [1] CRAN (R 4.0.2)
 stringr              * 1.4.0    2019-02-10 [1] CRAN (R 4.0.2)
 SummarizedExperiment * 1.20.0   2020-10-27 [1] Bioconductor  
 survival             * 3.2-10   2021-03-16 [1] CRAN (R 4.0.4)
 testthat               3.0.0    2020-10-31 [1] CRAN (R 4.0.2)
 tibble               * 3.1.1    2021-04-18 [1] CRAN (R 4.0.4)
 tidyr                * 1.1.3    2021-03-03 [1] CRAN (R 4.0.4)
 tidyselect             1.1.0    2020-05-11 [1] CRAN (R 4.0.2)
 tidyverse            * 1.3.1    2021-04-15 [1] CRAN (R 4.0.4)
 usethis                1.6.3    2020-09-17 [1] CRAN (R 4.0.2)
 utf8                   1.2.1    2021-03-12 [1] CRAN (R 4.0.4)
 vctrs                  0.3.7    2021-03-29 [1] CRAN (R 4.0.4)
 vipor                  0.4.5    2017-03-22 [1] CRAN (R 4.0.2)
 viridis                0.6.0    2021-04-15 [1] CRAN (R 4.0.4)
 viridisLite            0.4.0    2021-04-13 [1] CRAN (R 4.0.4)
 whisker                0.4      2019-08-28 [1] CRAN (R 4.0.2)
 withr                  2.4.2    2021-04-18 [1] CRAN (R 4.0.4)
 workflowr              1.6.2    2020-04-30 [1] CRAN (R 4.0.2)
 xfun                   0.22     2021-03-11 [1] CRAN (R 4.0.4)
 xml2                   1.3.2    2020-04-23 [1] CRAN (R 4.0.2)
 XVector                0.30.0   2020-10-27 [1] Bioconductor  
 yaml                   2.2.1    2020-02-01 [1] CRAN (R 4.0.2)
 zlibbioc               1.36.0   2020-10-27 [1] Bioconductor  

[1] /mnt/mcfiles/cazodi/R/x86_64-pc-linux-gnu-library/4.0
[2] /opt/R/4.0.4/lib/R/library