Last updated: 2021-05-13
Checks: 6 1
Knit directory: KEJP_2020_splatPop/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210215)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version b1e4853. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: data/ALL.chr2.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.EURO.0.99.MAF05.filtered.vcf
Ignored: data/D30.h5
Ignored: data/Diabetes/
Ignored: data/IBD/
Ignored: data/agg_IBD-ss2.rds
Ignored: data/agg_Neuro-10x_DA.rds
Ignored: data/agg_NeuroSeq-10x_D11-pool6-filt.rds
Ignored: data/agg_NeuroSeq-10x_D11-pool6.rds
Ignored: data/agg_diabetes-ss2.rds
Ignored: data/agg_iPSC-ss2_D0.rds
Ignored: data/covid/
Ignored: data/cuomo_NeuroSeq_10x_all_sce.rds
Ignored: data/pseudoB_IBD-ss2.rds
Ignored: data/pseudoB_Neuro-10x_DA.rds
Ignored: data/pseudoB_NeuroSeq-10x_D11-pool6-filt.rds
Ignored: data/pseudoB_NeuroSeq-10x_D11-pool6.rds
Ignored: data/pseudoB_diabetes-ss2.rds
Ignored: data/pseudoB_iPSC-ss2_D0.rds
Ignored: data/sce_IBD-ss2.rds
Ignored: data/sce_IBD-ss2_HC2.rds
Ignored: data/sce_Neuro-10x.rds
Ignored: data/sce_Neuro-10x_2CT.rds
Ignored: data/sce_Neuro-10x_DA-wihj4.rds
Ignored: data/sce_NeuroSeq-10x_D11-pool6-filt-mita1FPP.rds
Ignored: data/sce_NeuroSeq-10x_D11-pool6-filt.rds
Ignored: data/sce_NeuroSeq-10x_D11-pool6-mita1FPP.rds
Ignored: data/sce_NeuroSeq-10x_D11-pool6.rds
Ignored: data/sce_diabetes-ss2.rds
Ignored: data/sce_diabetes-ss2_T2D-5.rds
Ignored: data/sce_iPSC-ss2_D0-joxm39.rds
Ignored: data/sce_iPSC-ss2_D0.rds
Ignored: output/00_Figures/
Ignored: output/01_sims/
Ignored: output/demo_eQTL/
Ignored: references/1000GP_Phase3_sample_info.txt
Ignored: references/Homo_sapiens.GRCh38.99.chromosome.22.gff3
Ignored: references/chr2.filt.2-temporary.bed
Ignored: references/chr2.filt.2-temporary.bim
Ignored: references/chr2.filt.2-temporary.fam
Ignored: references/chr2.filt.2.log
Ignored: references/chr2.filt.log
Ignored: references/chr2.filt.map
Ignored: references/chr2.filt.nosex
Ignored: references/chr2.filt.ped
Ignored: references/chr2.filt.prune.in
Ignored: references/chr2.filt.prune.out
Ignored: references/chr2.filtered.log
Ignored: references/chr2.filtered.nosex
Ignored: references/chr2.filtered.vcf
Ignored: references/chr2.filtered2.log
Ignored: references/chr2.filtered2.nosex
Ignored: references/chr2.filtered2.vcf
Ignored: references/chr2.filtered3.log
Ignored: references/chr2.filtered3.nosex
Ignored: references/chr2.filtered3.vcf
Ignored: references/chr2.genes.gff3
Ignored: references/chr2.vcf.gz
Ignored: references/chr22.filt.log
Ignored: references/chr22.filt.map
Ignored: references/chr22.filt.nosex
Ignored: references/chr22.filt.ped
Ignored: references/chr22.filt.prune.in
Ignored: references/chr22.filt.prune.out
Ignored: references/chr22.filtered.log
Ignored: references/chr22.filtered.nosex
Ignored: references/chr22.filtered.vcf
Ignored: references/chr22.filtered.vcf.bed
Ignored: references/chr22.filtered.vcf.bim
Ignored: references/chr22.filtered.vcf.fam
Ignored: references/chr22.filtered.vcf.log
Ignored: references/chr22.filtered.vcf.nosex
Ignored: references/chr22.filtered.vcf.rel
Ignored: references/chr22.filtered.vcf.rel.id
Ignored: references/chr22.filtered.vcf.rel_mod
Ignored: references/chr22.genes.gff3
Ignored: references/chr22.genes.gff3_annotation
Ignored: references/chr22.genes.gff3_chunks
Ignored: references/chr22.vcf.gz
Ignored: references/keep_samples.txt
Ignored: references/remove_snps.txt
Ignored: references/test.log
Ignored: references/test.nosex
Untracked files:
Untracked: .DS_Store
Untracked: .cache/
Untracked: .config/
Untracked: .snakemake/
Untracked: KEJP_2020_splatPop.Rproj
Untracked: analysis/10x-Neuro_simulations.Rmd
Untracked: analysis/Applications_eQTL-mapping.Rmd
Untracked: analysis/figure/
Untracked: code/misc_functions.R
Untracked: code/plot_functions2.R
Untracked: code/sc_aggregate.R
Untracked: docs/
Untracked: envs/limix_env.yaml
Untracked: mod
Untracked: resources/keep_samples.txt
Untracked: tmp.txt
Untracked: workflow/
Unstaged changes:
Modified: .gitignore
Modified: .gitlab-ci.yml
Modified: CITATION
Modified: Dockerfile
Modified: LICENSE
Modified: README.md
Modified: _workflowr.yml
Modified: analysis/10x-Neuro_estimate-params.Rmd
Modified: analysis/KEJP_iPSC-ss2.Rmd
Modified: analysis/_site.yml
Modified: analysis/about.Rmd
Modified: analysis/index.Rmd
Modified: analysis/license.Rmd
Modified: analysis/ss2-iPSC_estimate-params.Rmd
Modified: analysis/ss2-iPSC_simulations.Rmd
Modified: cluster.json
Modified: code/1_process-empirical-data.R
Modified: code/2_estimate-splatPopParams.R
Modified: code/4_simulate_DEG.R
Modified: code/README.md
Modified: code/plot_functions.R
Modified: data/README.md
Modified: environment.yml
Modified: envs/myenv.yaml
Modified: org/README.md
Modified: org/project_management.org
Modified: output/README.md
Modified: references/README.md
Modified: resources/README.md
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ss2-iPSC_estimate-params.Rmd
) and HTML (public/ss2-iPSC_estimate-params.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | b1e4853 | cazodi | 2021-03-16 | update plot functions |
Rmd | ae3af3e | cazodi | 2021-03-10 | update simple ss2 ipsc sim |
html | ae3af3e | cazodi | 2021-03-10 | update simple ss2 ipsc sim |
Rmd | d24c101 | cazodi | 2021-02-17 | ipsc ss2 preprocessing |
html | d24c101 | cazodi | 2021-02-17 | ipsc ss2 preprocessing |
suppressPackageStartupMessages({
library(data.table)
library(SingleCellExperiment)
library(scater)
library(tidyverse)
library(Matrix)
library(splatter)
library(fitdistrplus)
})
set.seed(42)
504
n.genes <- TRUE save <-
The empirical data and the preprocessing performed is described in Cuomo et al., 2020. The processed data is available for download at Zenodo. The iPSC lines were multiplexed into 24 experimental pools (4-6 lines in each pool) and single cells were sequenced using the Smart-Seq2 protocol. Cells were assigned to their donor of origin using Cardelino. Here, we include only day0 cells (i.e. iPSC stage) that were successfully assigned to a donor and passed donor- and cell-level QC described below.
Snapshot of iPSC-ss2 reference data:
# Convert to SCE object
"/mnt/mcfiles/Datasets/single-cell-data/cuomo_iPSC_endoderm/cell_metadata_cols.tsv"
meta.loc <- "/mnt/mcfiles/Datasets/single-cell-data/cuomo_iPSC_endoderm/counts.tsv"
counts.loc <- read.csv(meta.loc, sep="\t", header=TRUE)
meta <-$X <- NULL
meta fread(counts.loc, sep="\t", header=TRUE)
counts <- as.data.frame(counts)
counts <-row.names(counts) <- counts$GeneID
$GeneID <- NULL
counts SingleCellExperiment(assays = list(counts = counts),
sce.ss <-colData = meta)
rm(counts)
# Standardize col data names
colnames(colData(sce.ss))[colnames(colData(sce.ss)) == "experiment"] <- "Batch"
colnames(colData(sce.ss))[colnames(colData(sce.ss)) == "donor"] <- "Sample"
$donor_exp <- paste(sce.ss$Sample, sce.ss$Batch, sep="_")
sce.ss
subset(sce.ss, , (day == "day0"))
sce.ss <- sce.ss[sample(rownames(sce.ss), n.genes), ]
sce.ss <-if(save){ saveRDS(sce.ss, file = "data/sce_iPSC-ss2_D0.rds") }
# Aggregate into population wide data
names(table(sce.ss$Sample)[table(sce.ss$Sample) > 100])
keepSamples <-.100 <- subset(sce.ss, , Sample %in% keepSamples)
sce aggregateAcrossCells(sce.100, ids = sce.100$donor_exp, statistics="mean")
agg.ss <- aggregateAcrossCells(sce.100, ids = sce.100$donor_exp, statistics="sum")
pb.ss <-
if(save){
saveRDS(agg.ss, file = "data/agg_iPSC-ss2_D0.rds")
saveRDS(pb.ss, file = "data/pseudoB_iPSC-ss2_D0.rds")
}
sce.ss
class: SingleCellExperiment
dim: 504 9661
metadata(0):
assays(1): counts
rownames(504): ENSG00000110066_SUV420H1 ENSG00000128045_RASL11B ...
ENSG00000160326_SLC2A6 ENSG00000167528_ZNF641
rowData names(0):
colnames(9661): 21672_1#101 21672_1#102 ... 24475_8#96 24475_8#98
colData names(94): assigned auxDir ... princ_curve_scaled01 donor_exp
reducedDimNames(0):
altExpNames(0):
counts(sce.ss[1:5,1:5])
21672_1#101 21672_1#102 21672_1#103 21672_1#104
ENSG00000110066_SUV420H1 1.4547171 1.3348227 2.25280087 3.93828400
ENSG00000128045_RASL11B 6.4995706 6.4622821 4.85403378 4.02948001
ENSG00000107186_MPDZ 0.0000000 1.2726227 0.99701653 1.12888160
ENSG00000139437_TCHP 0.1073557 2.8248941 0.04746060 0.00000000
ENSG00000083290_ULK2 0.3624107 0.0494878 0.01252976 0.02203401
21672_1#105
ENSG00000110066_SUV420H1 2.31723710
ENSG00000128045_RASL11B 5.37921226
ENSG00000107186_MPDZ 2.51720554
ENSG00000139437_TCHP 0.09386073
ENSG00000083290_ULK2 0.24289306
Samples with the most cells (use joxm):
# SCE for donor-experiment with most cells (joxm from exp_39)
sort(table(sce.ss$donor_exp), decreasing=TRUE)[1:5]
n.samples <- subset(sce.ss, , donor_exp == "joxm_expt_39")
sce.ss.joxm39 <-
if(save){ saveRDS(sce.ss.joxm39, file = "data/sce_iPSC-ss2_D0-joxm39.rds") }
n.samples
joxm_expt_39 sojd_expt_38 letw_expt_28 nudd_expt_34 yelp_expt_43
383 321 232 178 174
Single-cell parameters are estimated from scRNA-seq data from cells from the donor with the most cells (joxm in experiment 39) using 1255 randomly selected genes. Down-sampling the number of genes to match the number of genes we will simulate ensures the estimated library size parameters reflect real data.
Population parameters are estimated from either mean aggregated or pseudo-bulked (i.e. sum aggregated) scRNA-seq data. When mean aggregation is used we set pop.quant.norm to False because quantile normalization is not needed.
Parameters estimated for ss2-iPSC:
newSplatPopParams(pop.cv.bins = 50)
params <-
# Estimate params from single-cell population-scale data
splatPopEstimate(params = params,
params.ss2.sc <-counts = as.matrix(counts(sce.ss.joxm39)),
means = as.matrix(counts(agg.ss)))
setParams(params.ss2.sc, pop.quant.norm = FALSE)
params.ss2.sc <-
# Estimate params from pseudo-bulk population-scale data
splatPopEstimate(params = params,
params.ss2.psuB <-counts = as.matrix(counts(sce.ss.joxm39)),
means = as.matrix(counts(pb.ss)))
# Save parameter files
if(save){
saveRDS(params.ss2.sc, file = "output/01_sims/splatPop-params_iPSC-ss2_sc.rds")
saveRDS(params.ss2.psuB, file = "output/01_sims/splatPop-params_iPSC-ss2_psudoB.rds")
}
params.ss2.sc
A Params object of class SplatPopParams
Parameters can be (estimable) or [not estimable], 'Default' or 'NOT DEFAULT'
Secondary parameters are usually set during simulation
Global:
(GENES) (CELLS) [Seed]
504 383 617511
53 additional parameters
Batches:
[BATCHES] [BATCH CELLS] [Location] [Scale] [Remove]
1 383 0.1 0.1 FALSE
Mean:
(RATE) (SHAPE)
0.649032851154963 2.04892069999893
Library size:
(LOCATION) (SCALE) (Norm)
7.34174641600733 0.0470967865430461 FALSE
Exprs outliers:
(PROBABILITY) (Location) (Scale)
0 4 0.5
Groups:
[Groups] [Group Probs]
1 1
Diff expr:
[Probability] [Down Prob] [Location] [Scale]
0.1 0.5 0.1 0.4
BCV:
(COMMON DISP) (DOF)
0.1000244140625 10.4660831656687
Dropout:
[Type] (MIDPOINT) (SHAPE)
none -0.127652372689195 -1.64027326023482
Paths:
[From] [Steps] [Skew] [Non-linear] [Sigma Factor]
0 100 0.5 0.1 0.8
Population params:
(MEAN.SHAPE) (MEAN.RATE) [POP.QUANT.NORM] [similarity.scale]
1.91469187560408 0.623241597574194 FALSE 1
[batch.size] [nCells.sample] [nCells.shape] [nCells.rate]
10 FALSE 1.5 0.015
[CV.BINS]
50
(CV.PARAMS)
data.frame (50 x 4) with columns: start, end, shape, rate
start end shape rate
1 0.000 0.238 8.491719 11.80614
2 0.238 0.513 56.190528 128.01391
3 0.513 0.585 82.076840 212.75538
4 0.585 0.684 35.909855 107.69844
# ... with 46 more rows
eQTL params:
[eqtl.n] [eqtl.dist]
0.5 1e+06
[eqtl.maf.min] [eqtl.maf.max]
0.05 0.5
[eqtl.group.specific] [eqtl.condition.specific]
0.2 0.2
(eqtl.ES.shape) (eqtl.ES.rate)
3.6 12
Condition params:
[nConditions] [condition.prob] [cde.prob] [cde.downProb]
1 1 0.1 0.5
[cde.facLoc] [cde.facScale]
0.1 0.4
::session_info() devtools
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.0.4 (2021-02-15)
os Red Hat Enterprise Linux
system x86_64, linux-gnu
ui X11
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz Australia/Melbourne
date 2021-05-13
─ Packages ───────────────────────────────────────────────────────────────────
package * version date lib source
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.2)
backports 1.2.0 2020-11-02 [1] CRAN (R 4.0.2)
beachmat 2.6.4 2020-12-20 [1] Bioconductor
beeswarm 0.3.1 2021-03-07 [1] CRAN (R 4.0.4)
Biobase * 2.50.0 2020-10-27 [1] Bioconductor
BiocGenerics * 0.36.1 2021-04-16 [1] Bioconductor
BiocNeighbors 1.8.2 2020-12-07 [1] Bioconductor
BiocParallel 1.24.1 2020-11-06 [1] Bioconductor
BiocSingular 1.6.0 2020-10-27 [1] Bioconductor
bitops 1.0-7 2021-04-24 [1] CRAN (R 4.0.4)
broom 0.7.6 2021-04-05 [1] CRAN (R 4.0.4)
bslib 0.2.4 2021-01-25 [1] CRAN (R 4.0.3)
cachem 1.0.4 2021-02-13 [1] CRAN (R 4.0.3)
callr 3.7.0 2021-04-20 [1] CRAN (R 4.0.4)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.0.2)
checkmate 2.0.0 2020-02-06 [1] CRAN (R 4.0.2)
cli 2.4.0 2021-04-05 [1] CRAN (R 4.0.4)
colorspace 2.0-0 2020-11-11 [1] CRAN (R 4.0.2)
crayon 1.4.1 2021-02-08 [1] CRAN (R 4.0.4)
data.table * 1.13.2 2020-10-19 [1] CRAN (R 4.0.2)
DBI 1.1.1 2021-01-15 [1] CRAN (R 4.0.4)
dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.0.4)
DelayedArray 0.16.0 2020-10-27 [1] Bioconductor
DelayedMatrixStats 1.12.3 2021-02-03 [1] Bioconductor
desc 1.3.0 2021-03-05 [1] CRAN (R 4.0.4)
devtools 2.3.2 2020-09-18 [1] CRAN (R 4.0.2)
digest 0.6.27 2020-10-24 [1] CRAN (R 4.0.2)
dplyr * 1.0.5 2021-03-05 [1] CRAN (R 4.0.4)
edgeR 3.32.1 2021-01-14 [1] Bioconductor
ellipsis 0.3.1 2020-05-15 [1] CRAN (R 4.0.2)
evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.2)
fansi 0.4.2 2021-01-15 [1] CRAN (R 4.0.4)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.0.3)
fitdistrplus * 1.1-3 2020-12-05 [1] CRAN (R 4.0.3)
forcats * 0.5.1 2021-01-27 [1] CRAN (R 4.0.4)
fs 1.5.0 2020-07-31 [1] CRAN (R 4.0.2)
generics 0.1.0 2020-10-31 [1] CRAN (R 4.0.2)
GenomeInfoDb * 1.26.7 2021-04-08 [1] Bioconductor
GenomeInfoDbData 1.2.4 2020-11-10 [1] Bioconductor
GenomicRanges * 1.42.0 2020-10-27 [1] Bioconductor
ggbeeswarm 0.6.0 2017-08-07 [1] CRAN (R 4.0.2)
ggplot2 * 3.3.3 2020-12-30 [1] CRAN (R 4.0.4)
git2r 0.28.0 2021-01-10 [1] CRAN (R 4.0.4)
glue 1.4.2 2020-08-27 [1] CRAN (R 4.0.2)
gridExtra 2.3 2017-09-09 [1] CRAN (R 4.0.2)
gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.2)
haven 2.4.0 2021-04-14 [1] CRAN (R 4.0.4)
hms 1.0.0 2021-01-13 [1] CRAN (R 4.0.4)
htmltools 0.5.1.1 2021-01-22 [1] CRAN (R 4.0.3)
httpuv 1.5.5 2021-01-13 [1] CRAN (R 4.0.4)
httr 1.4.2 2020-07-20 [1] CRAN (R 4.0.2)
IRanges * 2.24.0 2020-10-27 [1] Bioconductor
irlba 2.3.3 2019-02-05 [1] CRAN (R 4.0.2)
jquerylib 0.1.3 2020-12-17 [1] CRAN (R 4.0.3)
jsonlite 1.7.2 2020-12-09 [1] CRAN (R 4.0.4)
knitr 1.32 2021-04-14 [1] CRAN (R 4.0.4)
later 1.1.0.1 2020-06-05 [1] CRAN (R 4.0.2)
lattice 0.20-41 2020-04-02 [2] CRAN (R 4.0.4)
lifecycle 1.0.0 2021-02-15 [1] CRAN (R 4.0.4)
limma 3.46.0 2020-10-27 [1] Bioconductor
locfit 1.5-9.4 2020-03-25 [1] CRAN (R 4.0.2)
lubridate 1.7.10 2021-02-26 [1] CRAN (R 4.0.4)
magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.0.3)
MASS * 7.3-53.1 2021-02-12 [1] CRAN (R 4.0.4)
Matrix * 1.3-2 2021-01-06 [1] CRAN (R 4.0.2)
MatrixGenerics * 1.2.0 2020-10-27 [1] Bioconductor
matrixStats * 0.57.0 2020-09-25 [1] CRAN (R 4.0.2)
memoise 2.0.0 2021-01-26 [1] CRAN (R 4.0.4)
modelr 0.1.8 2020-05-19 [1] CRAN (R 4.0.2)
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.2)
pillar 1.6.0 2021-04-13 [1] CRAN (R 4.0.4)
pkgbuild 1.2.0 2020-12-15 [1] CRAN (R 4.0.4)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.2)
pkgload 1.2.1 2021-04-06 [1] CRAN (R 4.0.4)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.2)
processx 3.5.1 2021-04-04 [1] CRAN (R 4.0.4)
promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.0.4)
ps 1.6.0 2021-02-28 [1] CRAN (R 4.0.4)
purrr * 0.3.4 2020-04-17 [1] CRAN (R 4.0.2)
R6 2.5.0 2020-10-28 [1] CRAN (R 4.0.2)
Rcpp 1.0.6 2021-01-15 [1] CRAN (R 4.0.4)
RCurl 1.98-1.3 2021-03-16 [1] CRAN (R 4.0.4)
readr * 1.4.0 2020-10-05 [1] CRAN (R 4.0.2)
readxl 1.3.1 2019-03-13 [1] CRAN (R 4.0.2)
remotes 2.3.0 2021-04-01 [1] CRAN (R 4.0.4)
reprex 2.0.0 2021-04-02 [1] CRAN (R 4.0.4)
rlang 0.4.10 2020-12-30 [1] CRAN (R 4.0.4)
rmarkdown 2.7 2021-02-19 [1] CRAN (R 4.0.4)
rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.0.3)
rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.0.3)
rsvd 1.0.5 2021-04-16 [1] CRAN (R 4.0.4)
rvest 1.0.0 2021-03-09 [1] CRAN (R 4.0.4)
S4Vectors * 0.28.0 2020-10-27 [1] Bioconductor
sass 0.3.1 2021-01-24 [1] CRAN (R 4.0.3)
scales 1.1.1 2020-05-11 [1] CRAN (R 4.0.2)
scater * 1.18.6 2021-02-26 [1] Bioconductor
scuttle 1.0.3 2020-11-23 [1] Bioconductor
sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.2)
SingleCellExperiment * 1.12.0 2020-10-27 [1] Bioconductor
sparseMatrixStats 1.2.1 2021-02-02 [1] Bioconductor
splatter * 1.15.2 2021-04-15 [1] Bioconductor
stringi 1.5.3 2020-09-09 [1] CRAN (R 4.0.2)
stringr * 1.4.0 2019-02-10 [1] CRAN (R 4.0.2)
SummarizedExperiment * 1.20.0 2020-10-27 [1] Bioconductor
survival * 3.2-10 2021-03-16 [1] CRAN (R 4.0.4)
testthat 3.0.0 2020-10-31 [1] CRAN (R 4.0.2)
tibble * 3.1.1 2021-04-18 [1] CRAN (R 4.0.4)
tidyr * 1.1.3 2021-03-03 [1] CRAN (R 4.0.4)
tidyselect 1.1.0 2020-05-11 [1] CRAN (R 4.0.2)
tidyverse * 1.3.1 2021-04-15 [1] CRAN (R 4.0.4)
usethis 1.6.3 2020-09-17 [1] CRAN (R 4.0.2)
utf8 1.2.1 2021-03-12 [1] CRAN (R 4.0.4)
vctrs 0.3.7 2021-03-29 [1] CRAN (R 4.0.4)
vipor 0.4.5 2017-03-22 [1] CRAN (R 4.0.2)
viridis 0.6.0 2021-04-15 [1] CRAN (R 4.0.4)
viridisLite 0.4.0 2021-04-13 [1] CRAN (R 4.0.4)
whisker 0.4 2019-08-28 [1] CRAN (R 4.0.2)
withr 2.4.2 2021-04-18 [1] CRAN (R 4.0.4)
workflowr 1.6.2 2020-04-30 [1] CRAN (R 4.0.2)
xfun 0.22 2021-03-11 [1] CRAN (R 4.0.4)
xml2 1.3.2 2020-04-23 [1] CRAN (R 4.0.2)
XVector 0.30.0 2020-10-27 [1] Bioconductor
yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.2)
zlibbioc 1.36.0 2020-10-27 [1] Bioconductor
[1] /mnt/mcfiles/cazodi/R/x86_64-pc-linux-gnu-library/4.0
[2] /opt/R/4.0.4/lib/R/library