Last updated: 2021-11-15

Checks: 6 1

Knit directory: KEJP_2020_splatPop/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210215) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 116e4a3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/10x_lung/
    Ignored:    data/ALL.chr2.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.EURO.0.99.MAF05.filtered.vcf
    Ignored:    data/D30.h5
    Ignored:    data/Diabetes/
    Ignored:    data/IBD/
    Ignored:    data/agg_10X-fibroblasts-control.rds
    Ignored:    data/agg_IBD-ss2.rds
    Ignored:    data/agg_Neuro-10x_DA.rds
    Ignored:    data/agg_NeuroSeq-10x_D11-pool6-filt.rds
    Ignored:    data/agg_NeuroSeq-10x_D11-pool6.rds
    Ignored:    data/agg_diabetes-ss2.rds
    Ignored:    data/agg_iPSC-ss2_D0.rds
    Ignored:    data/covid/
    Ignored:    data/cuomo_NeuroSeq_10x_all_sce.rds
    Ignored:    data/iPSC_eqtl-mapping/
    Ignored:    data/lung_fibrosis/
    Ignored:    data/pseudoB_IBD-ss2.rds
    Ignored:    data/pseudoB_Neuro-10x_DA.rds
    Ignored:    data/pseudoB_NeuroSeq-10x_D11-pool6-filt.rds
    Ignored:    data/pseudoB_NeuroSeq-10x_D11-pool6.rds
    Ignored:    data/pseudoB_diabetes-ss2.rds
    Ignored:    data/pseudoB_iPSC-ss2_D0.rds
    Ignored:    data/sce_10X-fibroblasts-947170.rds
    Ignored:    data/sce_10X-fibroblasts-allGenes.rds
    Ignored:    data/sce_10X-fibroblasts.rds
    Ignored:    data/sce_IBD-ss2.rds
    Ignored:    data/sce_IBD-ss2_HC2.rds
    Ignored:    data/sce_Neuro-10x.rds
    Ignored:    data/sce_Neuro-10x_2CT.rds
    Ignored:    data/sce_Neuro-10x_DA-wihj4.rds
    Ignored:    data/sce_Neuro-10x_DA_allGenes.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6-filt-mita1FPP.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6-filt.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6-mita1FPP.rds
    Ignored:    data/sce_NeuroSeq-10x_D11-pool6.rds
    Ignored:    data/sce_diabetes-ss2.rds
    Ignored:    data/sce_diabetes-ss2_T2D-5.rds
    Ignored:    data/sce_iPSC-ss2_D0-allGenes.rds
    Ignored:    data/sce_iPSC-ss2_D0-joxm39.rds
    Ignored:    data/sce_iPSC-ss2_D0.rds
    Ignored:    output/00_Figures/
    Ignored:    output/01_sims/
    Ignored:    output/10x_eQTL-mapping/
    Ignored:    output/demo_eQTL/
    Ignored:    output/iPSC_eQTL/
    Ignored:    references/1000GP_Phase3_sample_info.txt
    Ignored:    references/Homo_sapiens.GRCh38.99.chromosome.22.gff3
    Ignored:    references/chr2.filt.2-temporary.bed
    Ignored:    references/chr2.filt.2-temporary.bim
    Ignored:    references/chr2.filt.2-temporary.fam
    Ignored:    references/chr2.filt.2.log
    Ignored:    references/chr2.filt.log
    Ignored:    references/chr2.filt.map
    Ignored:    references/chr2.filt.nosex
    Ignored:    references/chr2.filt.ped
    Ignored:    references/chr2.filt.prune.in
    Ignored:    references/chr2.filt.prune.out
    Ignored:    references/chr2.filtered.log
    Ignored:    references/chr2.filtered.nosex
    Ignored:    references/chr2.filtered.vcf
    Ignored:    references/chr2.filtered2.log
    Ignored:    references/chr2.filtered2.nosex
    Ignored:    references/chr2.filtered2.vcf
    Ignored:    references/chr2.filtered3.log
    Ignored:    references/chr2.filtered3.nosex
    Ignored:    references/chr2.filtered3.vcf
    Ignored:    references/chr2.genes.gff3
    Ignored:    references/chr2.vcf.gz
    Ignored:    references/chr22.filt.log
    Ignored:    references/chr22.filt.map
    Ignored:    references/chr22.filt.nosex
    Ignored:    references/chr22.filt.ped
    Ignored:    references/chr22.filt.prune.in
    Ignored:    references/chr22.filt.prune.out
    Ignored:    references/chr22.filtered.log
    Ignored:    references/chr22.filtered.nosex
    Ignored:    references/chr22.filtered.vcf
    Ignored:    references/chr22.filtered.vcf.bed
    Ignored:    references/chr22.filtered.vcf.bim
    Ignored:    references/chr22.filtered.vcf.fam
    Ignored:    references/chr22.filtered.vcf.log
    Ignored:    references/chr22.filtered.vcf.nosex
    Ignored:    references/chr22.filtered.vcf.rel
    Ignored:    references/chr22.filtered.vcf.rel.id
    Ignored:    references/chr22.filtered.vcf.rel_mod
    Ignored:    references/chr22.genes.gff3
    Ignored:    references/chr22.genes.gff3_annotation
    Ignored:    references/chr22.genes.gff3_chunks
    Ignored:    references/chr22.vcf.gz
    Ignored:    references/eqtl_summary_stats.tar.gz
    Ignored:    references/eqtl_summary_stats_renamed/
    Ignored:    references/keep_samples.txt
    Ignored:    references/remove_snps.txt
    Ignored:    references/test.genome
    Ignored:    references/test.log
    Ignored:    references/test.nosex

Untracked files:
    Untracked:  .DS_Store
    Untracked:  .cache/
    Untracked:  .config/
    Untracked:  .snakemake/
    Untracked:  KEJP_2020_splatPop.Rproj
    Untracked:  analysis/bug_fixing.Rmd
    Untracked:  code/splatter_1.17.2.tar.gz
    Untracked:  docs/.DS_Store

Unstaged changes:
    Modified:   .gitignore
    Modified:   .gitlab-ci.yml
    Modified:   CITATION
    Modified:   Dockerfile
    Modified:   LICENSE
    Modified:   README.md
    Modified:   _workflowr.yml
    Modified:   analysis/10x-Fibrob_simulations.Rmd
    Modified:   analysis/10x-Neuro_estimate-params.Rmd
    Modified:   analysis/10x-Neuro_simulations.Rmd
    Modified:   analysis/KEJP_iPSC-ss2.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd
    Modified:   analysis/ss2-iPSC_estimate-params.Rmd
    Modified:   analysis/ss2-iPSC_simulations.Rmd
    Modified:   cluster.json
    Modified:   code/1_process-empirical-data.R
    Modified:   code/2_estimate-splatPopParams.R
    Modified:   code/4_simulate_DEG.R
    Modified:   code/README.md
    Modified:   code/plot_functions.R
    Modified:   code/plot_functions2.R
    Modified:   data/README.md
    Modified:   docs/site_libs/anchor-sections-1.0/anchor-sections.css
    Modified:   docs/site_libs/anchor-sections-1.0/anchor-sections.js
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.css.map
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap-theme.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.css.map
    Modified:   docs/site_libs/bootstrap-3.3.5/css/bootstrap.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/cerulean.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/cosmo.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/darkly.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/flatly.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Lato.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/LatoBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/LatoItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/NewsCycle.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/NewsCycleBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSans.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansBoldItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/OpenSansLightItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Raleway.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RalewayBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Roboto.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/RobotoMedium.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansPro.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProBold.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProItalic.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/SourceSansProLight.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/fonts/Ubuntu.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/css/journal.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/lumen.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/paper.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/readable.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/sandstone.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/simplex.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/spacelab.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/united.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/css/yeti.min.css
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.eot
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.svg
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.ttf
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.woff
    Modified:   docs/site_libs/bootstrap-3.3.5/fonts/glyphicons-halflings-regular.woff2
    Modified:   docs/site_libs/bootstrap-3.3.5/js/bootstrap.js
    Modified:   docs/site_libs/bootstrap-3.3.5/js/bootstrap.min.js
    Modified:   docs/site_libs/bootstrap-3.3.5/js/npm.js
    Modified:   docs/site_libs/bootstrap-3.3.5/shim/html5shiv.min.js
    Modified:   docs/site_libs/bootstrap-3.3.5/shim/respond.min.js
    Modified:   docs/site_libs/font-awesome-5.1.0/css/all.css
    Modified:   docs/site_libs/font-awesome-5.1.0/css/v4-shims.css
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-brands-400.woff2
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-regular-400.woff2
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.eot
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.svg
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.ttf
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.woff
    Modified:   docs/site_libs/font-awesome-5.1.0/webfonts/fa-solid-900.woff2
    Modified:   docs/site_libs/header-attrs-2.5/header-attrs.js
    Modified:   docs/site_libs/jquery-1.11.3/jquery.min.js
    Modified:   docs/site_libs/jqueryui-1.11.4/README
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_444444_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_555555_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_777620_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_777777_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_cc0000_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/images/ui-icons_ffffff_256x240.png
    Modified:   docs/site_libs/jqueryui-1.11.4/index.html
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.js
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.min.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.min.js
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.structure.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.structure.min.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.theme.css
    Modified:   docs/site_libs/jqueryui-1.11.4/jquery-ui.theme.min.css
    Modified:   docs/site_libs/navigation-1.1/codefolding.js
    Modified:   docs/site_libs/navigation-1.1/sourceembed.js
    Modified:   docs/site_libs/navigation-1.1/tabsets.js
    Modified:   docs/site_libs/tocify-1.9.1/jquery.tocify.css
    Modified:   docs/site_libs/tocify-1.9.1/jquery.tocify.js
    Modified:   environment.yml
    Modified:   envs/limix_env.yaml
    Modified:   envs/myenv.yaml
    Modified:   org/README.md
    Modified:   org/project_management.org
    Modified:   output/README.md
    Modified:   references/README.md
    Modified:   resources/README.md
    Modified:   resources/keep_samples.txt
    Modified:   workflow/config_bp_ss2.yaml
    Modified:   workflow/sims_limix_v1.15.1.smk

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/ss2-iPSC_simulations.Rmd) and HTML (public/ss2-iPSC_simulations.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 116e4a3 cazodi 2021-10-08 update mean-variance plots for manuscript
html 116e4a3 cazodi 2021-10-08 update mean-variance plots for manuscript
Rmd bd0c8b0 cazodi 2021-05-17 updates to 10x neuroseq and ss2 ipsc examples
html bd0c8b0 cazodi 2021-05-17 updates to 10x neuroseq and ss2 ipsc examples
Rmd b1e4853 cazodi 2021-03-16 update plot functions
Rmd ae3af3e cazodi 2021-03-10 update simple ss2 ipsc sim
Rmd d24c101 cazodi 2021-02-17 ipsc ss2 preprocessing

#install.packages("/mnt/mcscratch/cazodi/Software/splatter_1.15.2.tar.gz", repos = NULL, type="source")

suppressPackageStartupMessages({
  library(SingleCellExperiment)
  library(scater)
  library(tidyverse)
  #detach("package:splatter", unload=TRUE)
  library(splatter)
  library(VariantAnnotation)
  library(cluster)
  library(fitdistrplus)
  library(RColorBrewer)
  library(ggpubr)
  library(cowplot)
})

source("code/plot_functions.R")
source("code/misc_functions.R")
date <- Sys.Date()
set.seed(42)
n.genes <- 504 
save <- TRUE
rerun <- FALSE
date.use <- "2021-05-14"

sample.colors <- projectColors("samples")

# Chromosome 22 data
gff <- read.table("references/chr22.genes.gff3", sep="\t", header=FALSE, quote="")
vcf <-  readVcf("references/chr22.filtered.vcf", "hg38")
sampleNames <- colnames(geno(vcf)$GT)

# Smartseq2 iPSC data and splatPopParams
sce <- readRDS("data/sce_iPSC-ss2_D0.rds")
params <- readRDS("output/01_sims/splatPop-params_iPSC-ss2_sc.rds")
params.pb <- readRDS("output/01_sims/splatPop-params_iPSC-ss2_psudoB.rds")

Simple simulations

Cell-level visualization

  1. PCA plots: relative relationship between cells from different individuals, batches, cell-groups, etc.
  2. Clustering statistics: quantify the degree of separation between cells from the same compared to different clusters, where the cluster refers to the donor, batch, cell-group, or cohort. Note that the Silhouette width is based on the compactness vs. separation from the nearest neighbor cluster.

Gene-level visualizations

  1. Percent of variance explained: Percent of variance in expression across cells explained by each experimental factor (e.g., individual, batch, cell-group).
  2. Mean-variance relationship: The mean-variance trend for each gene across, with counts mean aggregated by individual (or individual-batch, etc), using a range of nCells per donor from the simulated data.
sce.simple <- subset(sce, , Batch == "expt_37")

if(rerun){
  nCells <- as.data.frame(colData(sce.simple)) %>% 
    group_by(Sample) %>% dplyr::count()
  nCells <- round(mean(nCells$n))
  
  nSamples <- length(unique(sce.simple$Sample))
  
  vcf.simple <- vcf[, sample(sampleNames, nSamples)]
  
  params.simple <- setParams(params, 
                      eqtl.n = 0.75,
                      similarity.scale = 2,
                      batchCells = c(nCells))
  
  sim.simple <- splatPopSimulate(vcf = vcf.simple, 
                                 gff = gff, 
                                 params = params.simple, 
                                 sparsify = FALSE)
}else{
  sim.simple <- readRDS(paste0("output/01_sims/", date.use, "_simple-ss2.rds"))
}

source("code/plot_functions.R")
plotComparisons(sim=sim.simple, emp=sce.simple, maxCells=50, 
                mv.nCells = c(5, 20, 52), mv.y.max = 0.8) 
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

Version Author Date
116e4a3 cazodi 2021-10-08
bd0c8b0 cazodi 2021-05-17
if(save){
  save.name <- paste0(date, "_simple-ss2")
  saveRDS(sim.simple, paste0("output/01_sims/", save.name, ".rds"))
  ggsave(paste0("output/00_Figures/", save.name, ".pdf"), width = 6, height = 7)
}

Simulations from “bulk” reference data.

While the single-cell parameters for splatPop need to be estimated from real single-cell data, the population scale parameters can be estimated from single-cell or bulk population scale RNA-seq data. To ensure the simulated data reflects single-cell data, if bulk data is used to estimate population parameters, splatPop will perform a quantile normalization step, where for each sample, the simulated gene means are quantile normalized to match the distribution of the gene means from the single-cell data. Note that this step can change the mean-variance relationship of the simulated data, so care should be taken when simulating data from bulk estimated parameters.

if(rerun){
  params.pb <- setParams(params.pb, 
                       eqtl.n = 0.75,
                       similarity.scale = 4,
                       batchCells = c(nCells))

  sim.ss2.pb <- splatPopSimulate(vcf = vcf.simple, gff = gff, 
                                 params = params.pb, sparsify = FALSE)

}else{
  sim.ss2.pb <- readRDS(paste0("output/01_sims/", date.use, "_simple-ss2-pb.rds"))
}

plotComparisons(sim=sim.ss2.pb, emp=sce.simple, maxCells=50, 
                mv.nCells = c(5, 20, 52), mv.y.max = 0.8)
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

Version Author Date
116e4a3 cazodi 2021-10-08
bd0c8b0 cazodi 2021-05-17
if(save){
  save.name <- paste0(date, "_simple-ss2-pb")
  saveRDS(sim.ss2.pb, paste0("output/01_sims/", save.name, ".rds"))
  ggsave(paste0("output/00_Figures/", save.name, ".pdf"), width = 6, height = 7)
}

Batch effects

Simple example

vcf.batches.simple <- vcf[, sample(sampleNames, 5)]

if(rerun){
  params.ss.batches.simple <- setParams(params, batchCells=c(40, 40),
                                        batch.size = 3,
                                        eqtl.n = 0.5,
                                        batch.facLoc = 0.1,
                                        batch.facScale = 0.25)

  sim.batches.simple <- splatPopSimulate(vcf = vcf.batches.simple, gff = gff, 
                                params = params.ss.batches.simple, 
                                sparsify = FALSE)
}else{
  sim.batches.simple <- readRDS(paste0("output/01_sims/", date.use, 
                                       "_example-batches.rds"))
}

plotSims(sim=sim.batches.simple, variables = c("Sample", "Batch"), 
         colour_by = "Sample", shape_by= "Batch")
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

Version Author Date
116e4a3 cazodi 2021-10-08
bd0c8b0 cazodi 2021-05-17
if(save){
  save.name <- paste0(date, "_example-batches")
  saveRDS(sim.batches.simple, paste0("output/01_sims/", save.name, ".rds"))
  ggsave(paste0("output/00_Figures/", save.name, ".pdf"), width = 3, height = 5)
}

Smartseq2 - iPSC complex batch structure

The ss2-iPSC data set contains data from 10 individuals sequenced over 3 batches (expt 31, 32, and 33), with two individuals () replicated in two batches.

sce.batches <- subset(sce, , Batch %in% c("expt_22", "expt_23", "expt_24")) 
#sce.batches <- subset(sce, , Batch %in% c("expt_37", "expt_38", "expt_39")) 
sce.batches <- subset(sce.batches, , !(Sample %in% c("eoxi", "iudw", "oikd")))

if(rerun){
  table(sce.batches$Sample, sce.batches$Batch)
  nSamples <- length(unique(sce.batches$Sample))
  
  nCells.SB <- as.list(data.frame(table(sce.batches$Sample,
                                        sce.batches$Batch)))$Freq
  nCells.SB <- nCells.SB[which(nCells.SB != 0)]
  
  nC.fit <- fitdist(nCells.SB, "gamma")
  vcf.batches <- vcf[, sample(sampleNames, nSamples)]
  
  params.ss.batches <- setParams(params, 
                                 # population description parameters
                                 nCells.sample = TRUE,
                                 nCells.shape = nC.fit$estimate["shape"],
                                 nCells.rate = nC.fit$estimate["rate"],
                                 batchCells=c(1, 1, 1),
                                 batch.size = 4,
                                 # parameters specifying effects
                                 eqtl.n = 1,
                                 similarity.scale = 7, 
                                 batch.facLoc = c(0, 0, 0),
                                 batch.facScale = c(0.35, 0.01, 0.01))
  
  sim.batches <- splatPopSimulate(vcf = vcf.batches, gff = gff, 
                                params = params.ss.batches, sparsify = FALSE)
} else{
  sim.batches <- readRDS(paste0("output/01_sims/", date.use, "_batches.rds"))
}

plotComparisons(sim=sim.batches, emp=sce.batches, 
                maxCells = 30, maxBatches=3,
                variables = c("Sample", "Batch"), 
                colour_by = "Sample",
                shape_by= "Batch",
                samp.col = sample.colors, 
                mv.nCells = c(5, 20, 52), 
                mv.y.max = 0.8)
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'
`geom_smooth()` using formula 'y ~ x'
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.

Version Author Date
116e4a3 cazodi 2021-10-08
bd0c8b0 cazodi 2021-05-17
if(save){
  save.name <- paste0(date, "_batches")
  saveRDS(sim.batches, paste0("output/01_sims/", save.name, ".rds"))
  ggsave(paste0("output/00_Figures/", save.name, ".pdf"), width = 6, height = 7)
}

tSNE plot comparisons

While the PCA plots are useful for showing global relationships between cells, UMAP and tSNE dimension reduction methods have become the norm for visualizing single-cell RNA-sequencing data.

pSim <- plotTSNEx(sim.simple, colour_by="Sample", 
                  maxCells = 50, samp.col = sample.colors)
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.
pEmp<- plotTSNEx(sce.simple, colour_by="Sample",
                  maxCells = 50, samp.col = sample.colors) 
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.
pSimBatch <- plotTSNEx(sim.batches, colour_by="Sample", shape_by="Batch", 
                  maxCells = 50, samp.col = sample.colors)
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.
pEmpBatch <- plotTSNEx(sce.batches, colour_by="Sample", shape_by="Batch", 
                  maxCells = 50, samp.col = sample.colors) 
Scale for 'colour' is already present. Adding another scale for 'colour',
which will replace the existing scale.
plot_grid(pEmp, pSim, pEmpBatch, pSimBatch, ncol=2, labels = "auto")

if(save){
  save.name <- paste0(date, "_ss2-TSNEs")
  ggsave(paste0("output/00_Figures/", save.name, ".pdf"), width = 6)
}
Saving 6 x 10 in image

Large simulation for eQTL mapping demo

Using the same parameters as above, we will simulate a larger dataset to perform eQTL mapping on. We will simulate 500 cells per sample, with samples sequenced in 10 batches, with 10 samples per batch (total = 100 samples). We randomly sample the batch effect sizes from normal distributions around the values used above.

if(rerun) {
  nSamples <- 100
  vcf.large <- vcf[, sample(sampleNames, nSamples)]
  
  params.ss.large <- setParams(params, 
                                 # population description parameters
                                 nCells.sample = FALSE,
                                 batchCells= rep(500, 10),
                                 batch.size = 10,
                                 # parameters specifying effects
                                 eqtl.n = 0.7,
                                 similarity.scale = 7, 
                                 batch.facLoc = abs(rnorm(10, 0.05, 0.1)),
                                 batch.facScale = abs(rnorm(10, 0.15, 0.1)))
  
  
  sim.large <- splatPopSimulate(vcf = vcf.large, gff = gff, 
                                params = params.ss.large, sparsify = FALSE)
  
  if(save){
  save.name <- paste0(date, "_ss2-large")
  saveRDS(sim.large, paste0("output/01_sims/", save.name, ".rds"))
}
} 

devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value                               
 version  R version 4.0.4 (2021-02-15)        
 os       Red Hat Enterprise Linux 8.4 (Ootpa)
 system   x86_64, linux-gnu                   
 ui       X11                                 
 language (EN)                                
 collate  en_AU.UTF-8                         
 ctype    en_AU.UTF-8                         
 tz       Australia/Melbourne                 
 date     2021-11-15                          

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version  date       lib source        
 abind                  1.4-5    2016-07-21 [1] CRAN (R 4.0.2)
 AnnotationDbi          1.52.0   2020-10-27 [1] Bioconductor  
 askpass                1.1      2019-01-13 [1] CRAN (R 4.0.2)
 assertthat             0.2.1    2019-03-21 [1] CRAN (R 4.0.2)
 backports              1.2.1    2020-12-09 [1] CRAN (R 4.0.4)
 beachmat               2.6.4    2020-12-20 [1] Bioconductor  
 beeswarm               0.4.0    2021-06-01 [1] CRAN (R 4.0.4)
 Biobase              * 2.50.0   2020-10-27 [1] Bioconductor  
 BiocFileCache          1.14.0   2020-10-27 [1] Bioconductor  
 BiocGenerics         * 0.36.1   2021-04-16 [1] Bioconductor  
 BiocNeighbors          1.8.2    2020-12-07 [1] Bioconductor  
 BiocParallel           1.24.1   2020-11-06 [1] Bioconductor  
 BiocSingular           1.6.0    2020-10-27 [1] Bioconductor  
 biomaRt                2.46.3   2021-02-09 [1] Bioconductor  
 Biostrings           * 2.58.0   2020-10-27 [1] Bioconductor  
 bit                    4.0.4    2020-08-04 [1] CRAN (R 4.0.2)
 bit64                  4.0.5    2020-08-30 [1] CRAN (R 4.0.2)
 bitops                 1.0-7    2021-04-24 [1] CRAN (R 4.0.4)
 blob                   1.2.2    2021-07-23 [1] CRAN (R 4.0.4)
 broom                  0.7.9    2021-07-27 [1] CRAN (R 4.0.4)
 BSgenome               1.58.0   2020-10-27 [1] Bioconductor  
 bslib                  0.2.5.1  2021-05-18 [1] CRAN (R 4.0.4)
 cachem                 1.0.6    2021-08-19 [1] CRAN (R 4.0.4)
 callr                  3.7.0    2021-04-20 [1] CRAN (R 4.0.4)
 car                    3.0-11   2021-06-27 [1] CRAN (R 4.0.4)
 carData                3.0-4    2020-05-22 [1] CRAN (R 4.0.2)
 cellranger             1.1.0    2016-07-27 [1] CRAN (R 4.0.2)
 checkmate              2.0.0    2020-02-06 [1] CRAN (R 4.0.2)
 cli                    3.0.1    2021-07-17 [1] CRAN (R 4.0.4)
 cluster              * 2.1.0    2019-06-19 [2] CRAN (R 4.0.4)
 colorspace             2.0-2    2021-06-24 [1] CRAN (R 4.0.4)
 cowplot              * 1.1.1    2020-12-30 [1] CRAN (R 4.0.4)
 crayon                 1.4.1    2021-02-08 [1] CRAN (R 4.0.4)
 curl                   4.3.2    2021-06-23 [1] CRAN (R 4.0.4)
 data.table             1.14.2   2021-09-27 [1] CRAN (R 4.0.4)
 DBI                    1.1.1    2021-01-15 [1] CRAN (R 4.0.4)
 dbplyr                 2.1.1    2021-04-06 [1] CRAN (R 4.0.4)
 DelayedArray           0.16.3   2021-03-24 [1] Bioconductor  
 DelayedMatrixStats     1.12.3   2021-02-03 [1] Bioconductor  
 desc                   1.4.0    2021-09-28 [1] CRAN (R 4.0.4)
 devtools               2.4.2    2021-06-07 [1] CRAN (R 4.0.4)
 digest                 0.6.28   2021-09-23 [1] CRAN (R 4.0.4)
 dplyr                * 1.0.7    2021-06-18 [1] CRAN (R 4.0.4)
 ellipsis               0.3.2    2021-04-29 [1] CRAN (R 4.0.4)
 evaluate               0.14     2019-05-28 [1] CRAN (R 4.0.2)
 fansi                  0.5.0    2021-05-25 [1] CRAN (R 4.0.4)
 farver                 2.1.0    2021-02-28 [1] CRAN (R 4.0.4)
 fastmap                1.1.0    2021-01-25 [1] CRAN (R 4.0.3)
 fitdistrplus         * 1.1-6    2021-09-28 [1] CRAN (R 4.0.4)
 forcats              * 0.5.1    2021-01-27 [1] CRAN (R 4.0.4)
 foreign                0.8-81   2020-12-22 [2] CRAN (R 4.0.4)
 fs                     1.5.0    2020-07-31 [1] CRAN (R 4.0.2)
 generics               0.1.0    2020-10-31 [1] CRAN (R 4.0.2)
 GenomeInfoDb         * 1.26.7   2021-04-08 [1] Bioconductor  
 GenomeInfoDbData       1.2.4    2020-11-10 [1] Bioconductor  
 GenomicAlignments      1.26.0   2020-10-27 [1] Bioconductor  
 GenomicFeatures        1.42.3   2021-04-01 [1] Bioconductor  
 GenomicRanges        * 1.42.0   2020-10-27 [1] Bioconductor  
 ggbeeswarm             0.6.0    2017-08-07 [1] CRAN (R 4.0.2)
 ggplot2              * 3.3.5    2021-06-25 [1] CRAN (R 4.0.4)
 ggpubr               * 0.4.0    2020-06-27 [1] CRAN (R 4.0.3)
 ggsignif               0.6.3    2021-09-09 [1] CRAN (R 4.0.4)
 git2r                  0.28.0   2021-01-10 [1] CRAN (R 4.0.4)
 glue                   1.4.2    2020-08-27 [1] CRAN (R 4.0.2)
 gridExtra              2.3      2017-09-09 [1] CRAN (R 4.0.2)
 gtable                 0.3.0    2019-03-25 [1] CRAN (R 4.0.2)
 haven                  2.4.3    2021-08-04 [1] CRAN (R 4.0.4)
 highr                  0.9      2021-04-16 [1] CRAN (R 4.0.4)
 hms                    1.1.0    2021-05-17 [1] CRAN (R 4.0.4)
 htmltools              0.5.2    2021-08-25 [1] CRAN (R 4.0.4)
 httpuv                 1.6.3    2021-09-09 [1] CRAN (R 4.0.4)
 httr                   1.4.2    2020-07-20 [1] CRAN (R 4.0.2)
 IRanges              * 2.24.1   2020-12-12 [1] Bioconductor  
 irlba                  2.3.3    2019-02-05 [1] CRAN (R 4.0.2)
 jquerylib              0.1.4    2021-04-26 [1] CRAN (R 4.0.4)
 jsonlite               1.7.2    2020-12-09 [1] CRAN (R 4.0.4)
 knitr                  1.34     2021-09-09 [1] CRAN (R 4.0.4)
 labeling               0.4.2    2020-10-20 [1] CRAN (R 4.0.2)
 later                  1.3.0    2021-08-18 [1] CRAN (R 4.0.4)
 lattice                0.20-41  2020-04-02 [2] CRAN (R 4.0.4)
 lifecycle              1.0.1    2021-09-24 [1] CRAN (R 4.0.4)
 locfit                 1.5-9.4  2020-03-25 [1] CRAN (R 4.0.2)
 lubridate              1.8.0    2021-10-07 [1] CRAN (R 4.0.4)
 magrittr               2.0.1    2020-11-17 [1] CRAN (R 4.0.3)
 MASS                 * 7.3-54   2021-05-03 [1] CRAN (R 4.0.4)
 Matrix                 1.3-4    2021-06-01 [1] CRAN (R 4.0.4)
 MatrixGenerics       * 1.2.1    2021-01-30 [1] Bioconductor  
 matrixStats          * 0.60.0   2021-07-26 [1] CRAN (R 4.0.4)
 memoise                2.0.0    2021-01-26 [1] CRAN (R 4.0.4)
 mgcv                   1.8-36   2021-06-01 [1] CRAN (R 4.0.4)
 modelr                 0.1.8    2020-05-19 [1] CRAN (R 4.0.2)
 munsell                0.5.0    2018-06-12 [1] CRAN (R 4.0.2)
 nlme                   3.1-153  2021-09-07 [1] CRAN (R 4.0.4)
 openssl                1.4.5    2021-09-02 [1] CRAN (R 4.0.4)
 openxlsx               4.2.4    2021-06-16 [1] CRAN (R 4.0.4)
 pillar                 1.6.3    2021-09-26 [1] CRAN (R 4.0.4)
 pkgbuild               1.2.0    2020-12-15 [1] CRAN (R 4.0.4)
 pkgconfig              2.0.3    2019-09-22 [1] CRAN (R 4.0.2)
 pkgload                1.2.2    2021-09-11 [1] CRAN (R 4.0.4)
 prettyunits            1.1.1    2020-01-24 [1] CRAN (R 4.0.2)
 processx               3.5.2    2021-04-30 [1] CRAN (R 4.0.4)
 progress               1.2.2    2019-05-16 [1] CRAN (R 4.0.2)
 promises               1.2.0.1  2021-02-11 [1] CRAN (R 4.0.4)
 ps                     1.6.0    2021-02-28 [1] CRAN (R 4.0.4)
 purrr                * 0.3.4    2020-04-17 [1] CRAN (R 4.0.2)
 R6                     2.5.1    2021-08-19 [1] CRAN (R 4.0.4)
 rappdirs               0.3.3    2021-01-31 [1] CRAN (R 4.0.4)
 RColorBrewer         * 1.1-2    2014-12-07 [1] CRAN (R 4.0.2)
 Rcpp                   1.0.7    2021-07-07 [1] CRAN (R 4.0.4)
 RCurl                  1.98-1.4 2021-08-17 [1] CRAN (R 4.0.4)
 readr                * 2.0.1    2021-08-10 [1] CRAN (R 4.0.4)
 readxl                 1.3.1    2019-03-13 [1] CRAN (R 4.0.2)
 remotes                2.4.1    2021-09-29 [1] CRAN (R 4.0.4)
 reprex                 2.0.1    2021-08-05 [1] CRAN (R 4.0.4)
 rio                    0.5.27   2021-06-21 [1] CRAN (R 4.0.4)
 rlang                  0.4.12   2021-10-18 [1] CRAN (R 4.0.4)
 rmarkdown              2.11     2021-09-14 [1] CRAN (R 4.0.4)
 rprojroot              2.0.2    2020-11-15 [1] CRAN (R 4.0.3)
 Rsamtools            * 2.6.0    2020-10-27 [1] Bioconductor  
 RSQLite                2.2.8    2021-08-21 [1] CRAN (R 4.0.4)
 rstatix                0.7.0    2021-02-13 [1] CRAN (R 4.0.4)
 rstudioapi             0.13     2020-11-12 [1] CRAN (R 4.0.3)
 rsvd                   1.0.5    2021-04-16 [1] CRAN (R 4.0.4)
 rtracklayer            1.50.0   2020-10-27 [1] Bioconductor  
 Rtsne                  0.15     2018-11-10 [1] CRAN (R 4.0.4)
 rvest                  1.0.1    2021-07-26 [1] CRAN (R 4.0.4)
 S4Vectors            * 0.28.1   2020-12-09 [1] Bioconductor  
 sass                   0.4.0    2021-05-12 [1] CRAN (R 4.0.4)
 scales                 1.1.1    2020-05-11 [1] CRAN (R 4.0.2)
 scater               * 1.18.6   2021-02-26 [1] Bioconductor  
 scuttle                1.0.4    2020-12-17 [1] Bioconductor  
 sessioninfo            1.1.1    2018-11-05 [1] CRAN (R 4.0.2)
 SingleCellExperiment * 1.12.0   2020-10-27 [1] Bioconductor  
 sparseMatrixStats      1.2.1    2021-02-02 [1] Bioconductor  
 splatter             * 1.14.1   2020-12-01 [1] Bioconductor  
 stringi                1.7.5    2021-10-04 [1] CRAN (R 4.0.4)
 stringr              * 1.4.0    2019-02-10 [1] CRAN (R 4.0.2)
 SummarizedExperiment * 1.20.0   2020-10-27 [1] Bioconductor  
 survival             * 3.2-13   2021-08-24 [1] CRAN (R 4.0.4)
 testthat               3.0.4    2021-07-01 [1] CRAN (R 4.0.4)
 tibble               * 3.1.4    2021-08-25 [1] CRAN (R 4.0.4)
 tidyr                * 1.1.4    2021-09-27 [1] CRAN (R 4.0.4)
 tidyselect             1.1.1    2021-04-30 [1] CRAN (R 4.0.4)
 tidyverse            * 1.3.1    2021-04-15 [1] CRAN (R 4.0.4)
 tzdb                   0.1.2    2021-07-20 [1] CRAN (R 4.0.4)
 usethis                2.0.1    2021-02-10 [1] CRAN (R 4.0.4)
 utf8                   1.2.2    2021-07-24 [1] CRAN (R 4.0.4)
 VariantAnnotation    * 1.36.0   2020-10-27 [1] Bioconductor  
 vctrs                  0.3.8    2021-04-29 [1] CRAN (R 4.0.4)
 vipor                  0.4.5    2017-03-22 [1] CRAN (R 4.0.2)
 viridis                0.6.2    2021-10-13 [1] CRAN (R 4.0.4)
 viridisLite            0.4.0    2021-04-13 [1] CRAN (R 4.0.4)
 whisker                0.4      2019-08-28 [1] CRAN (R 4.0.2)
 withr                  2.4.2    2021-04-18 [1] CRAN (R 4.0.4)
 workflowr              1.6.2    2020-04-30 [1] CRAN (R 4.0.2)
 xfun                   0.26     2021-09-14 [1] CRAN (R 4.0.4)
 XML                    3.99-0.7 2021-08-17 [1] CRAN (R 4.0.4)
 xml2                   1.3.2    2020-04-23 [1] CRAN (R 4.0.2)
 XVector              * 0.30.0   2020-10-27 [1] Bioconductor  
 yaml                   2.2.1    2020-02-01 [1] CRAN (R 4.0.2)
 zip                    2.2.0    2021-05-31 [1] CRAN (R 4.0.4)
 zlibbioc               1.36.0   2020-10-27 [1] Bioconductor  

[1] /mnt/mcfiles/cazodi/R/x86_64-pc-linux-gnu-library/4.0
[2] /opt/R/4.0.4/lib/R/library