Last updated: 2024-01-01

Checks: 7 0

Knit directory: mage_2020_marker-gene-benchmarking/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190102) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2632193. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Renviron
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .snakemake/
    Ignored:    NSForest/.Rhistory
    Ignored:    NSForest/NS-Forest_v3_Extended_Binary_Markers_Supplmental.csv
    Ignored:    NSForest/NS-Forest_v3_Full_Results.csv
    Ignored:    NSForest/NSForest3_medianValues.csv
    Ignored:    NSForest/NSForest_v3_Final_Result.csv
    Ignored:    NSForest/__pycache__/
    Ignored:    NSForest/data/
    Ignored:    RankCorr/picturedRocks/__pycache__/
    Ignored:    benchmarks/
    Ignored:    config/
    Ignored:    data/cellmarker/
    Ignored:    data/downloaded_data/
    Ignored:    data/expert_annotations/
    Ignored:    data/expert_mgs/
    Ignored:    data/raw_data/
    Ignored:    data/real_data/
    Ignored:    data/sim_data/
    Ignored:    data/sim_mgs/
    Ignored:    data/special_real_data/
    Ignored:    figures/
    Ignored:    logs/
    Ignored:    results/
    Ignored:    weights/

Unstaged changes:
    Deleted:    analysis/expert-mgs-direction.Rmd
    Modified:   smash-fork

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/astrocyte-data.Rmd) and HTML (public/astrocyte-data.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html fcecf65 Jeffrey Pullin 2022-09-09 Build site.
html af96b34 Jeffrey Pullin 2022-08-30 Build site.
html 0e47874 Jeffrey Pullin 2022-05-04 Build site.
html 8b989e1 Jeffrey Pullin 2022-05-02 Build site.
html 0548273 Jeffrey Pullin 2022-05-02 Build site.
Rmd 50bca7c Jeffrey Pullin 2022-05-02 workflowr::wflow_publish(all = TRUE, republish = TRUE)
html 50bca7c Jeffrey Pullin 2022-05-02 workflowr::wflow_publish(all = TRUE, republish = TRUE)
html 9401652 Jeffrey Pullin 2022-02-09 Add extra html files
Rmd fb74aaf Jeffrey Pullin 2022-02-08 Clean out the analysis folder

library(SingleCellExperiment)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'
The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars
Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, basename, cbind, colnames,
    dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
    grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
    order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
    rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
    union, unique, unsplit, which.max, which.min
Loading required package: S4Vectors

Attaching package: 'S4Vectors'
The following objects are masked from 'package:base':

    expand.grid, I, unname
Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':

    rowMedians
The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians
library(dplyr)

Attaching package: 'dplyr'
The following object is masked from 'package:Biobase':

    combine
The following objects are masked from 'package:GenomicRanges':

    intersect, setdiff, union
The following object is masked from 'package:GenomeInfoDb':

    intersect
The following objects are masked from 'package:IRanges':

    collapse, desc, intersect, setdiff, slice, union
The following objects are masked from 'package:S4Vectors':

    first, intersect, rename, setdiff, setequal, union
The following objects are masked from 'package:BiocGenerics':

    combine, intersect, setdiff, union
The following object is masked from 'package:matrixStats':

    count
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
library(purrr)

Attaching package: 'purrr'
The following object is masked from 'package:GenomicRanges':

    reduce
The following object is masked from 'package:IRanges':

    reduce
library(tibble)
library(scater)
Loading required package: scuttle
Loading required package: ggplot2
astrocyte <- readRDS(here::here("data", "real_data", "astrocyte.rds"))
scanpy_default <- readRDS(
  here::here("results", "real_data", "astrocyte-scanpy_t_rankby_raw.rds")
)

seurat_default <- readRDS(
  here::here("results", "real_data", "astrocyte-seurat_wilcox.rds")
)

Work on Astro_THAL_Lat for now.

scanpy_default |> 
  pluck("result") |> 
  as_tibble() |> 
  filter(cluster == "Astro_THAL_lat")
# A tibble: 2,000 × 7
   cluster     gene  scaled_statistic   p_value p_value_adj log_fc raw_statistic
   <chr>       <chr>            <dbl>     <dbl>       <dbl>  <dbl>         <dbl>
 1 Astro_THAL… Trpm3             39.3 2.72e-206   5.44e-203   2.49             0
 2 Astro_THAL… Erbb4             31.9 1.96e-129   1.31e-126   2.72             0
 3 Astro_THAL… Kcnd2             31.5 3.79e-134   3.79e-131   2.53             0
 4 Astro_THAL… Aldh…             24.5 2.83e- 80   7.07e- 78   3.18             0
 5 Astro_THAL… Plcb1             22.2 1.39e- 75   2.54e- 73   1.92             0
 6 Astro_THAL… Slc4…             19.0 1.40e- 62   1.65e- 60   1.21             0
 7 Astro_THAL… Rgs6              18.5 7.71e- 58   7.01e- 56   1.73             0
 8 Astro_THAL… Lrp1b             16.8 1.12e- 50   8.65e- 49   1.30             0
 9 Astro_THAL… Nrxn3             16.6 3.83e- 47   2.64e- 45   2.22             0
10 Astro_THAL… Esrrg             15.9 1.66e- 43   1.04e- 41   2.72             0
# … with 1,990 more rows
seurat_default |> 
  pluck("result") |> 
  as_tibble() |> 
  filter(cluster == "Astro_THAL_lat")
# A tibble: 397 × 7
     p_value p_value_adj cluster     log_fc gene  raw_statistic scaled_statistic
       <dbl>       <dbl> <fct>        <dbl> <chr>         <dbl>            <dbl>
 1 4.54e-119   9.08e-116 Astro_THAL…   2.09 Aldh…             0                0
 2 5.66e-103   1.13e- 99 Astro_THAL…   1.47 Trpm3             0                0
 3 1.01e- 91   2.02e- 88 Astro_THAL…   1.35 Erbb4             0                0
 4 3.05e- 87   6.10e- 84 Astro_THAL…   1.37 Esrrg             0                0
 5 7.49e- 77   1.50e- 73 Astro_THAL…   1.27 Kcnd2             0                0
 6 6.60e- 75   1.32e- 71 Astro_THAL…  -1.61 Slc1…             0                0
 7 6.84e- 72   1.37e- 68 Astro_THAL…   1.18 Car10             0                0
 8 7.67e- 72   1.53e- 68 Astro_THAL…   1.39 Plcb1             0                0
 9 6.22e- 66   1.24e- 62 Astro_THAL…   1.36 Nrxn3             0                0
10 2.77e- 65   5.54e- 62 Astro_THAL…   1.10 Sntg1             0                0
# … with 387 more rows

Only Seurat finds Car10

scanpy_default |> 
  pluck("result") |> 
  as_tibble() |> 
  filter(cluster == "Astro_THAL_lat") |> 
  mutate(n = 1:n()) |> 
  filter(gene == "Car10")
# A tibble: 1 × 8
  cluster gene  scaled_statistic  p_value p_value_adj log_fc raw_statistic     n
  <chr>   <chr>            <dbl>    <dbl>       <dbl>  <dbl>         <dbl> <int>
1 Astro_… Car10             12.9 1.52e-31    5.16e-30   2.61             0    20

Astro_STR

Efemp1, Gfra1, Thbs4, Zfhx3

scanpy_default |> 
  pluck("result") |> 
  as_tibble() |> 
  filter(cluster == "Astro_STR")
# A tibble: 2,000 × 7
   cluster   gene   scaled_statistic  p_value p_value_adj log_fc raw_statistic
   <chr>     <chr>             <dbl>    <dbl>       <dbl>  <dbl>         <dbl>
 1 Astro_STR Slc1a2            12.4  1.37e-21    9.79e-20  1.21              0
 2 Astro_STR Prex2             11.5  2.30e-19    1.48e-17  1.48              0
 3 Astro_STR Cst3              10.5  3.49e-17    1.99e-15  1.60              0
 4 Astro_STR Malat1             9.21 1.50e-14    7.29e-13  0.495             0
 5 Astro_STR Zbtb20             8.05 3.53e-12    1.50e-10  0.764             0
 6 Astro_STR Mgat5              7.37 1.11e-10    3.84e- 9  1.72              0
 7 Astro_STR Tspan7             7.06 3.77e-10    1.23e- 8  1.21              0
 8 Astro_STR Rmst               6.85 1.15e- 9    3.66e- 8  1.59              0
 9 Astro_STR Gfra1              6.18 2.42e- 8    6.72e- 7  2.26              0
10 Astro_STR Gnao1              6.17 2.13e- 8    6.09e- 7  1.04              0
# … with 1,990 more rows
seurat_default |> 
  pluck("result") |> 
  as_tibble() |> 
  filter(cluster == "Astro_STR")
# A tibble: 234 × 7
    p_value p_value_adj cluster   log_fc gene   raw_statistic scaled_statistic
      <dbl>       <dbl> <fct>      <dbl> <chr>          <dbl>            <dbl>
 1 6.16e-21    1.23e-17 Astro_STR -3.05  Kcnd2              0                0
 2 4.70e-19    9.40e-16 Astro_STR  0.920 Gfra1              0                0
 3 9.43e-18    1.89e-14 Astro_STR  1.28  Cst3               0                0
 4 2.42e-16    4.83e-13 Astro_STR  1.01  Prex2              0                0
 5 2.57e-16    5.14e-13 Astro_STR -1.41  Lrp1b              0                0
 6 5.43e-16    1.09e-12 Astro_STR  1.02  Rcan2              0                0
 7 4.72e-15    9.44e-12 Astro_STR  0.798 Slc1a2             0                0
 8 9.44e-14    1.89e-10 Astro_STR  1.19  Mgat5              0                0
 9 2.06e-13    4.11e-10 Astro_STR  0.430 Malat1             0                0
10 3.42e-13    6.84e-10 Astro_STR -2.30  Erbb4              0                0
# … with 224 more rows
plotExpression(astrocyte, x = "label", "Prex2")

plotExpression(astrocyte, x = "label", "Cst3")

plotExpression(astrocyte, x = "label", "Mgat5")

Kcnd2 down-regulated

scanpy_default |> 
  pluck("result") |> 
  as_tibble() |> 
  filter(cluster == "Astro_HPC")
# A tibble: 2,000 × 7
   cluster   gene   scaled_statistic  p_value p_value_adj log_fc raw_statistic
   <chr>     <chr>             <dbl>    <dbl>       <dbl>  <dbl>         <dbl>
 1 Astro_HPC Slc1a2            18.2  1.93e-55    5.50e-53  1.08              0
 2 Astro_HPC Tspan7            12.4  1.34e-29    1.58e-27  1.17              0
 3 Astro_HPC Wdr17             12.2  6.60e-29    6.95e-27  0.882             0
 4 Astro_HPC Ptprt             11.4  1.63e-25    1.30e-23  1.12              0
 5 Astro_HPC Tcf4              11.1  1.96e-24    1.35e-22  1.09              0
 6 Astro_HPC Slc1a3            10.1  1.60e-21    9.14e-20  0.800             0
 7 Astro_HPC Lsamp             10.1  5.19e-21    2.88e-19  0.602             0
 8 Astro_HPC Gnao1             10.0  6.05e-21    3.27e-19  1.01              0
 9 Astro_HPC Cadps              9.86 8.80e-20    3.91e-18  2.84              0
10 Astro_HPC Clmn               9.82 6.06e-20    3.03e-18  1.30              0
# … with 1,990 more rows
seurat_default |> 
  pluck("result") |> 
  as_tibble() |> 
  filter(cluster == "Astro_HPC")
# A tibble: 305 × 7
    p_value p_value_adj cluster   log_fc gene   raw_statistic scaled_statistic
      <dbl>       <dbl> <fct>      <dbl> <chr>          <dbl>            <dbl>
 1 3.47e-59    6.94e-56 Astro_HPC  1.09  Cadps              0                0
 2 4.61e-53    9.22e-50 Astro_HPC -2.73  Kcnd2              0                0
 3 3.37e-43    6.74e-40 Astro_HPC -2.54  Erbb4              0                0
 4 1.61e-42    3.22e-39 Astro_HPC -1.96  Trpm3              0                0
 5 2.38e-42    4.75e-39 Astro_HPC -1.57  Fry                0                0
 6 1.40e-34    2.80e-31 Astro_HPC -1.48  Gabbr2             0                0
 7 2.20e-32    4.40e-29 Astro_HPC  0.674 Slc1a2             0                0
 8 5.23e-30    1.05e-26 Astro_HPC -2.22  Gria1              0                0
 9 1.05e-28    2.10e-25 Astro_HPC -0.961 Fgf14              0                0
10 8.24e-28    1.65e-24 Astro_HPC  0.859 Tcf4               0                0
# … with 295 more rows
plotExpression(astrocyte, x = "label", "Slc1a2")

plotExpression(astrocyte, x = "label", "Pdgfd")

plotExpression(astrocyte, x = "label", "Cadps")

plotExpression(astrocyte, x = "label", "Kcnd2")


devtools::session_info()
─ Session info  ──────────────────────────────────────────────────────────────
 hash: flag: Bolivia, woman singer: dark skin tone, headphone

 setting  value
 version  R version 4.1.2 (2021-11-01)
 os       Red Hat Enterprise Linux 9.2 (Plow)
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_AU.UTF-8
 ctype    en_AU.UTF-8
 tz       Australia/Melbourne
 date     2024-01-01
 pandoc   2.18 @ /apps/easybuild-2022/easybuild/software/MPI/GCC/11.3.0/OpenMPI/4.1.4/RStudio-Server/2022.07.2+576-Java-11-R-4.1.2/bin/pandoc/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version  date (UTC) lib source
 assertthat             0.2.1    2019-03-21 [2] CRAN (R 4.1.2)
 beachmat               2.10.0   2021-10-26 [1] Bioconductor
 beeswarm               0.4.0    2021-06-01 [2] CRAN (R 4.1.2)
 Biobase              * 2.54.0   2021-10-26 [1] Bioconductor
 BiocGenerics         * 0.40.0   2021-10-26 [1] Bioconductor
 BiocNeighbors          1.12.0   2021-10-26 [1] Bioconductor
 BiocParallel           1.28.3   2021-12-09 [1] Bioconductor
 BiocSingular           1.10.0   2021-10-26 [1] Bioconductor
 bitops                 1.0-7    2021-04-24 [2] CRAN (R 4.1.2)
 bslib                  0.3.1    2021-10-06 [1] CRAN (R 4.1.0)
 cachem                 1.0.6    2021-08-19 [1] CRAN (R 4.1.0)
 callr                  3.7.0    2021-04-20 [2] CRAN (R 4.1.2)
 cli                    3.6.1    2023-03-23 [1] CRAN (R 4.1.0)
 colorspace             2.1-0    2023-01-23 [1] CRAN (R 4.1.0)
 cowplot                1.1.1    2020-12-30 [2] CRAN (R 4.1.2)
 crayon                 1.5.1    2022-03-26 [1] CRAN (R 4.1.0)
 DBI                    1.1.2    2021-12-20 [1] CRAN (R 4.1.0)
 DelayedArray           0.20.0   2021-10-26 [1] Bioconductor
 DelayedMatrixStats     1.16.0   2021-10-26 [1] Bioconductor
 desc                   1.4.0    2021-09-28 [2] CRAN (R 4.1.2)
 devtools               2.4.2    2021-06-07 [2] CRAN (R 4.1.2)
 digest                 0.6.29   2021-12-01 [1] CRAN (R 4.1.0)
 dplyr                * 1.0.9    2022-04-28 [1] CRAN (R 4.1.0)
 ellipsis               0.3.2    2021-04-29 [2] CRAN (R 4.1.2)
 evaluate               0.14     2019-05-28 [2] CRAN (R 4.1.2)
 fansi                  1.0.4    2023-01-22 [1] CRAN (R 4.1.0)
 farver                 2.1.1    2022-07-06 [1] CRAN (R 4.1.0)
 fastmap                1.1.0    2021-01-25 [2] CRAN (R 4.1.2)
 fs                     1.5.2    2021-12-08 [1] CRAN (R 4.1.0)
 generics               0.1.3    2022-07-05 [1] CRAN (R 4.1.0)
 GenomeInfoDb         * 1.30.0   2021-10-26 [1] Bioconductor
 GenomeInfoDbData       1.2.7    2021-12-03 [1] Bioconductor
 GenomicRanges        * 1.46.1   2021-11-18 [1] Bioconductor
 ggbeeswarm             0.6.0    2017-08-07 [2] CRAN (R 4.1.2)
 ggplot2              * 3.3.6    2022-05-03 [1] CRAN (R 4.1.0)
 ggrepel                0.9.1    2021-01-15 [2] CRAN (R 4.1.2)
 git2r                  0.28.0   2021-01-10 [2] CRAN (R 4.1.2)
 glue                   1.6.0    2021-12-17 [1] CRAN (R 4.1.0)
 gridExtra              2.3      2017-09-09 [2] CRAN (R 4.1.2)
 gtable                 0.3.0    2019-03-25 [2] CRAN (R 4.1.2)
 here                   1.0.1    2020-12-13 [1] CRAN (R 4.1.0)
 highr                  0.9      2021-04-16 [2] CRAN (R 4.1.2)
 htmltools              0.5.2    2021-08-25 [1] CRAN (R 4.1.0)
 httpuv                 1.6.5    2022-01-05 [1] CRAN (R 4.1.0)
 IRanges              * 2.28.0   2021-10-26 [1] Bioconductor
 irlba                  2.3.5    2021-12-06 [1] CRAN (R 4.1.0)
 jquerylib              0.1.4    2021-04-26 [2] CRAN (R 4.1.2)
 jsonlite               1.8.0    2022-02-22 [1] CRAN (R 4.1.0)
 knitr                  1.36     2021-09-29 [1] CRAN (R 4.1.0)
 labeling               0.4.2    2020-10-20 [2] CRAN (R 4.1.2)
 later                  1.3.0    2021-08-18 [1] CRAN (R 4.1.0)
 lattice                0.20-45  2021-09-22 [2] CRAN (R 4.1.2)
 lifecycle              1.0.1    2021-09-24 [1] CRAN (R 4.1.0)
 magrittr               2.0.3    2022-03-30 [1] CRAN (R 4.1.0)
 Matrix                 1.3-4    2021-06-01 [2] CRAN (R 4.1.2)
 MatrixGenerics       * 1.6.0    2021-10-26 [1] Bioconductor
 matrixStats          * 0.62.0   2022-04-19 [1] CRAN (R 4.1.0)
 memoise                2.0.1    2021-11-26 [1] CRAN (R 4.1.0)
 munsell                0.5.0    2018-06-12 [2] CRAN (R 4.1.2)
 pillar                 1.7.0    2022-02-01 [1] CRAN (R 4.1.0)
 pkgbuild               1.2.0    2020-12-15 [2] CRAN (R 4.1.2)
 pkgconfig              2.0.3    2019-09-22 [2] CRAN (R 4.1.2)
 pkgload                1.2.3    2021-10-13 [2] CRAN (R 4.1.2)
 prettyunits            1.1.1    2020-01-24 [2] CRAN (R 4.1.2)
 processx               3.5.2    2021-04-30 [2] CRAN (R 4.1.2)
 promises               1.2.0.1  2021-02-11 [2] CRAN (R 4.1.2)
 ps                     1.7.1    2022-06-18 [1] CRAN (R 4.1.0)
 purrr                * 0.3.4    2020-04-17 [2] CRAN (R 4.1.2)
 R6                     2.5.1    2021-08-19 [1] CRAN (R 4.1.0)
 Rcpp                   1.0.8.3  2022-03-17 [1] CRAN (R 4.1.0)
 RCurl                  1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)
 remotes                2.4.2    2021-11-30 [1] CRAN (R 4.1.0)
 rlang                  1.0.3    2022-06-27 [1] CRAN (R 4.1.0)
 rmarkdown              2.14     2022-04-25 [1] CRAN (R 4.1.0)
 rprojroot              2.0.3    2022-04-02 [1] CRAN (R 4.1.0)
 rstudioapi             0.14     2022-08-22 [1] CRAN (R 4.1.0)
 rsvd                   1.0.5    2021-04-16 [1] CRAN (R 4.1.0)
 S4Vectors            * 0.32.3   2021-11-21 [1] Bioconductor
 sass                   0.4.1    2022-03-23 [1] CRAN (R 4.1.0)
 ScaledMatrix           1.2.0    2021-10-26 [1] Bioconductor
 scales                 1.2.1    2022-08-20 [1] CRAN (R 4.1.0)
 scater               * 1.22.0   2021-10-26 [1] Bioconductor
 scuttle              * 1.4.0    2021-10-26 [1] Bioconductor
 sessioninfo            1.2.0    2021-10-31 [2] CRAN (R 4.1.2)
 SingleCellExperiment * 1.16.0   2021-10-26 [1] Bioconductor
 sparseMatrixStats      1.6.0    2021-10-26 [1] Bioconductor
 stringi                1.7.6    2021-11-29 [1] CRAN (R 4.1.0)
 stringr                1.4.0    2019-02-10 [2] CRAN (R 4.1.2)
 SummarizedExperiment * 1.24.0   2021-10-26 [1] Bioconductor
 testthat               3.1.0    2021-10-04 [2] CRAN (R 4.1.2)
 tibble               * 3.1.7    2022-05-03 [1] CRAN (R 4.1.0)
 tidyselect             1.1.2    2022-02-21 [1] CRAN (R 4.1.0)
 usethis                2.1.3    2021-10-27 [2] CRAN (R 4.1.2)
 utf8                   1.2.3    2023-01-31 [1] CRAN (R 4.1.0)
 vctrs                  0.4.1    2022-04-13 [1] CRAN (R 4.1.0)
 vipor                  0.4.5    2017-03-22 [2] CRAN (R 4.1.2)
 viridis                0.6.2    2021-10-13 [1] CRAN (R 4.1.0)
 viridisLite            0.4.2    2023-05-02 [1] CRAN (R 4.1.0)
 whisker                0.4      2019-08-28 [2] CRAN (R 4.1.2)
 withr                  2.5.0    2022-03-03 [1] CRAN (R 4.1.0)
 workflowr              1.7.0    2021-12-21 [1] CRAN (R 4.1.0)
 xfun                   0.31     2022-05-10 [1] CRAN (R 4.1.0)
 XVector                0.34.0   2021-10-26 [1] Bioconductor
 yaml                   2.3.5    2022-02-21 [1] CRAN (R 4.1.0)
 zlibbioc               1.40.0   2021-10-26 [1] Bioconductor

 [1] /home/jpullin/R/x86_64-pc-linux-gnu-library/4.1
 [2] /apps/easybuild-2022/easybuild/software/MPI/GCC/11.3.0/OpenMPI/4.1.4/R/4.1.2/lib64/R/library

──────────────────────────────────────────────────────────────────────────────