Last updated: 2024-01-01
Checks: 7 0
Knit directory:
mage_2020_marker-gene-benchmarking/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190102)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 2632193. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Renviron
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: .snakemake/
Ignored: NSForest/.Rhistory
Ignored: NSForest/NS-Forest_v3_Extended_Binary_Markers_Supplmental.csv
Ignored: NSForest/NS-Forest_v3_Full_Results.csv
Ignored: NSForest/NSForest3_medianValues.csv
Ignored: NSForest/NSForest_v3_Final_Result.csv
Ignored: NSForest/__pycache__/
Ignored: NSForest/data/
Ignored: RankCorr/picturedRocks/__pycache__/
Ignored: benchmarks/
Ignored: config/
Ignored: data/cellmarker/
Ignored: data/downloaded_data/
Ignored: data/expert_annotations/
Ignored: data/expert_mgs/
Ignored: data/raw_data/
Ignored: data/real_data/
Ignored: data/sim_data/
Ignored: data/sim_mgs/
Ignored: data/special_real_data/
Ignored: figures/
Ignored: logs/
Ignored: results/
Ignored: weights/
Unstaged changes:
Deleted: analysis/expert-mgs-direction.Rmd
Modified: smash-fork
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/predictive-performance.Rmd
) and HTML
(public/predictive-performance.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 2632193 | Jeffrey Pullin | 2024-01-01 | Implement revisions |
Rmd | 70dee30 | Jeffrey Pullin | 2023-12-04 | Add new ‘maximum sum’ classifier analysis |
Rmd | 9487c1e | Jeffrey Pullin | 2023-06-17 | Add draft of dataset characteristic section analysis |
Rmd | 686c7b2 | Jeffrey Pullin | 2023-06-11 | Add blood datasets to pred-perf comparison |
Rmd | d3539cb | Jeffrey Pullin | 2023-06-10 | Add ‘blood’ datasets |
Rmd | 59f00aa | Jeffrey Pullin | 2023-05-14 | Add cell type difficulty analysis |
html | fcecf65 | Jeffrey Pullin | 2022-09-09 | Build site. |
Rmd | 0c2eafc | Jeffrey Pullin | 2022-09-09 | Update website |
html | af96b34 | Jeffrey Pullin | 2022-08-30 | Build site. |
html | a4e328e | Jeffrey Pullin | 2022-08-29 | Build site. |
Rmd | 464852e | Jeffrey Pullin | 2022-08-29 | Add SVM classifier |
html | 0e47874 | Jeffrey Pullin | 2022-05-04 | Build site. |
html | 8b989e1 | Jeffrey Pullin | 2022-05-02 | Build site. |
html | 0548273 | Jeffrey Pullin | 2022-05-02 | Build site. |
Rmd | 50bca7c | Jeffrey Pullin | 2022-05-02 | workflowr::wflow_publish(all = TRUE, republish = TRUE) |
Rmd | 708cfdd | Jeffrey Pullin | 2022-02-18 | Add first draft of predictive performance comparison |
To compare the predictive performance of the marker gene sets different methods select.
library(SingleCellExperiment)
library(dplyr)
library(ggplot2)
library(tidyr)
library(class)
library(scater)
library(forcats)
library(purrr)
source(here::here("code", "analysis-utils.R"))
source(here::here("code", "plot-utils.R"))
<- function(data, metric) {
plot_classifier_metric
<- metric_lookup[metric]
plot_metric <- dataset_lookup[data$data_id[[1]]]
plot_data_label <- switch(
plot_classifier $classifier[[1]],
dataknn = "KNN",
svm = "SVM",
sum_max = "\nMaximum summed expression"
)
# https://github.com/tidyverse/ggplot2/issues/2799
<- coord_flip(ylim = c(0.5, 1))
cf $default <- TRUE
cf
<- data %>%
plot_data select(!!sym(metric), pars, method)
rm(data)
# FIXME: Add check of whether `metric` is in data.
%>%
plot_data mutate(
plot_pars = pars_lookup[pars],
plot_method = method_lookup[method]
%>%
) mutate(plot_pars = fct_reorder(factor(plot_pars), !!sym(metric))) %>%
ggplot(aes(x = plot_pars, y = !!sym(metric), colour = plot_method)) +
geom_boxplot() +
+
package_colour +
cf labs(
x = "Method",
colour = "Package",
y = plot_metric,
title = paste0("Multiclass prediction ", plot_data_label, ", ",
", ", plot_classifier)
plot_metric, +
) theme_bw()
}
<- function(data, pars) {
plot_confusion_matrix
<- dataset_lookup[data$data_id[[1]]]
plot_data <- pars_lookup[pars]
plot_pars <- switch(
plot_classifier $classifier[[1]],
dataknn = "KNN",
svm = "SVM",
sum = "SUM"
)
%>%
data filter(pars == !!pars) %>%
pull(confusion_mat) %>%
pluck(1) %>%
as_tibble() %>%
ggplot(aes(x = prediction, y = true)) +
geom_tile(aes(fill = n), col = "black") +
geom_text(aes(label = n)) +
scale_fill_gradient(low = "white", high = "forestgreen") +
labs(
x = "Predicted cell type",
y = "True cell type",
fill = "Number of cells",
title = paste0(plot_data, " data, ", plot_pars,
" method, ", plot_classifier)
+
) theme_bw() +
theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
axis.ticks.y = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
) }
<- retrieve_real_data_parameters() %>%
pred_perf_data select(-c(fit_method, covariate, rankby, lambda, test_use, rankby_abs, func,
%>%
test.type, pval.type, metric, test.use)) expand_grid(classifier = c("svm", "knn", "sum_max")) %>%
rowwise() %>%
mutate(
pred_perf_filename = paste0("pred_perf-", data_id, "-", method_name, "-",
".rds"),
classifier, pred_perf_path = here::here("results", "pred_perf", pred_perf_filename),
pred_perf = list(readRDS(pred_perf_path))
%>%
) select(-data_id) %>%
unnest(pred_perf)
%>%
pred_perf_data filter(data_id == "pbmc3k", classifier == "knn") %>%
plot_classifier_metric("median_f1_score")
%>%
pred_perf_data filter(data_id == "pbmc3k", classifier == "svm") %>%
plot_classifier_metric("median_f1_score")
%>%
pred_perf_data filter(data_id == "pbmc3k", classifier == "sum_max") %>%
plot_classifier_metric("median_f1_score") +
coord_flip(ylim = c(0.0, 1))
<- pred_perf_data %>%
pbmc3k_seurat_wilcox_confmat filter(data_id == "pbmc3k", fold == "1", classifier == "knn") %>%
plot_confusion_matrix("seurat_wilcox")
pbmc3k_seurat_wilcox_confmat
saveRDS(
pbmc3k_seurat_wilcox_confmat,::here("figures", "raw", "pbmc3k-seurat-wilcox-confmat.rds")
here )
%>%
pred_perf_data filter(data_id == "endothelial", classifier == "knn") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "endothelial", classifier == "svm") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "zeisel", classifier == "knn") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "zeisel", classifier == "svm") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "paul", classifier == "knn") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "paul", classifier == "svm") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "ss3_pbmc", classifier == "knn") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "ss3_pbmc", classifier == "svm") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "mesenchymal", classifier == "knn") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "mesenchymal", classifier == "svm") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "lawlor", classifier == "knn") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "lawlor", classifier == "svm") %>%
plot_classifier_metric("mean_f1_score") +
coord_flip(ylim = c(0.0, 0.6))
%>%
pred_perf_data filter(data_id == "astrocyte", classifier == "knn") %>%
plot_classifier_metric("mean_f1_score")
%>%
pred_perf_data filter(data_id == "astrocyte", classifier == "svm") %>%
plot_classifier_metric("mean_f1_score")
<- pred_perf_data %>%
zhao_pred_perf filter(data_id == "zhao", classifier == "knn") %>%
plot_classifier_metric("median_f1_score") +
coord_flip(ylim = c(0.5, 0.85))
zhao_pred_perf
saveRDS(
zhao_pred_perf,::here("figures", "raw", "zhao-pred-perf.rds")
here
)
<- pred_perf_data %>%
zhao_pred_perf_svm filter(data_id == "zhao", classifier == "svm") %>%
plot_classifier_metric("median_f1_score") +
coord_flip(ylim = c(0.5, 0.95))
zhao_pred_perf_svm
saveRDS(
zhao_pred_perf_svm,::here("figures", "raw", "zhao-pred-perf-svm.rds")
here
)
<- pred_perf_data %>%
zhao_pred_perf_sum_max filter(data_id == "zhao", classifier == "sum_max") %>%
plot_classifier_metric("median_f1_score") +
coord_flip(ylim = c(0, 1))
zhao_pred_perf_sum_max
saveRDS(
zhao_pred_perf_sum_max,::here("figures", "raw", "zhao-pred-perf-sum_max.rds")
here )
<- pred_perf_data %>%
overall_multiclass_pred_rank_knn_plot filter(classifier == "knn") %>%
group_by(data_id, pars, method) %>%
summarise(median_f1_score = median(median_f1_score), .groups = "drop") %>%
group_by(data_id) %>%
mutate(rank = rank(median_f1_score)) %>%
ungroup() %>%
mutate(
plot_method = method_lookup[method],
plot_pars = pars_lookup[pars],
plot_data_id = dataset_lookup[data_id]
%>%
) # This step encodes the ranking by rank.
mutate(plot_pars = fct_reorder(factor(plot_pars), rank, .fun = median)) %>%
ggplot(aes(x = plot_data_id, y = plot_pars)) +
geom_tile(aes(fill = rank), colour = "black") +
scale_fill_distiller(palette = "RdYlBu",
breaks = seq(1, 56, by = 5),
labels = seq(56, 1, by = -5)) +
theme_bw() +
labs(
title = "Median F1-score rank across datasets, KNN",
x = "Dataset",
y = "Method",
fill = "Rank",
+
) theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
axis.ticks.y = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
) overall_multiclass_pred_rank_knn_plot
<- pred_perf_data %>%
overall_multiclass_pred_rank_svm_plot filter(data_id != "lawlor") %>%
filter(classifier == "svm") %>%
group_by(data_id, pars, method) %>%
summarise(median_f1_score = median(median_f1_score), .groups = "drop") %>%
group_by(data_id) %>%
mutate(rank = rank(median_f1_score)) %>%
ungroup() %>%
mutate(
plot_method = method_lookup[method],
plot_pars = pars_lookup[pars],
plot_data_id = dataset_lookup[data_id]
%>%
) # This step encodes the ranking by rank.
mutate(plot_pars = fct_reorder(factor(plot_pars), rank, .fun = median)) %>%
ggplot(aes(x = plot_data_id, y = plot_pars)) +
geom_tile(aes(fill = rank), colour = "black") +
scale_fill_distiller(palette = "RdYlBu",
breaks = seq(1, 56, by = 5),
labels = seq(56, 1, by = -5)) +
theme_bw() +
labs(
title = "Median F1-score rank across datasets, SVM",
x = "Dataset",
y = "Method",
fill = "Rank",
+
) theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
axis.ticks.y = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
)
<- pred_perf_data %>%
overall_multiclass_pred_z_score_knn_plot filter(classifier == "knn") %>%
group_by(data_id, pars, method) %>%
summarise(median_f1_score = median(median_f1_score), .groups = "drop") %>%
group_by(data_id) %>%
mutate(score = scale(median_f1_score)[, 1]) %>%
ungroup() %>%
mutate(
plot_method = method_lookup[method],
plot_pars = pars_lookup[pars],
plot_data_id = dataset_lookup[data_id]
%>%
) mutate(plot_pars = fct_reorder(factor(plot_pars), score, .fun = mean)) %>%
ggplot(aes(x = plot_data_id, y = plot_pars)) +
geom_tile(aes(fill = score), colour = "black") +
scale_fill_distiller(palette = "RdYlBu") +
theme_bw() +
labs(
title = "Mean z-score F1-score across datasets, KNN",
x = "Dataset",
y = "Method",
fill = "z-score",
+
) theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
axis.ticks.y = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
)
saveRDS(
overall_multiclass_pred_z_score_knn_plot,::here("figures", "raw", "overall-mc-pred-plot-z-score-knn.rds")
here
)
<- pred_perf_data %>%
overall_multiclass_pred_z_score_svm_plot filter(data_id != "lawlor") %>%
filter(classifier == "svm") %>%
group_by(data_id, pars, method) %>%
summarise(median_f1_score = median(median_f1_score), .groups = "drop") %>%
group_by(data_id) %>%
mutate(score = scale(median_f1_score)[, 1]) %>%
ungroup() %>%
mutate(
plot_method = method_lookup[method],
plot_pars = pars_lookup[pars],
plot_data_id = dataset_lookup[data_id]
%>%
) mutate(plot_pars = fct_reorder(factor(plot_pars), score, .fun = mean)) %>%
ggplot(aes(x = plot_data_id, y = plot_pars)) +
geom_tile(aes(fill = score), colour = "black") +
scale_fill_distiller(palette = "RdYlBu") +
theme_bw() +
labs(
title = "Mean z-score F1-score across datasets, SVM",
x = "Dataset",
y = "Method",
fill = "z-score",
+
) theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
axis.ticks.y = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
)
saveRDS(
overall_multiclass_pred_z_score_svm_plot,::here("figures", "raw", "overall-mc-pred-plot-z-score-svm.rds")
here
)
<- pred_perf_data %>%
overall_multiclass_pred_z_score_sum_max_plot filter(classifier == "sum_max") %>%
group_by(data_id, pars, method) %>%
summarise(median_f1_score = median(median_f1_score), .groups = "drop") %>%
group_by(data_id) %>%
mutate(score = scale(median_f1_score)[, 1]) %>%
ungroup() %>%
mutate(
plot_method = method_lookup[method],
plot_pars = pars_lookup[pars],
plot_data_id = dataset_lookup[data_id]
%>%
) mutate(plot_pars = fct_reorder(factor(plot_pars), score, .fun = mean)) %>%
ggplot(aes(x = plot_data_id, y = plot_pars)) +
geom_tile(aes(fill = score), colour = "black") +
scale_fill_distiller(palette = "RdYlBu") +
theme_bw() +
labs(
title =
"Mean z-score F1-score across datasets,\nMaximum summed gene expression",
x = "Dataset",
y = "Method",
fill = "z-score",
+
) theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.border = element_blank(),
axis.ticks.y = element_blank(),
axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
)
saveRDS(
overall_multiclass_pred_z_score_sum_max_plot,::here("figures", "raw", "overall-mc-pred-plot-z-score-sum_max.rds")
here )
::session_info() devtools
─ Session info ──────────────────────────────────────────────────────────────
hash: weary cat, man: curly hair, hammer and wrench
setting value
version R version 4.1.2 (2021-11-01)
os Red Hat Enterprise Linux 9.2 (Plow)
system x86_64, linux-gnu
ui X11
language (EN)
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Melbourne
date 2024-01-01
pandoc 2.18 @ /apps/easybuild-2022/easybuild/software/MPI/GCC/11.3.0/OpenMPI/4.1.4/RStudio-Server/2022.07.2+576-Java-11-R-4.1.2/bin/pandoc/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
assertthat 0.2.1 2019-03-21 [2] CRAN (R 4.1.2)
beachmat 2.10.0 2021-10-26 [1] Bioconductor
beeswarm 0.4.0 2021-06-01 [2] CRAN (R 4.1.2)
Biobase * 2.54.0 2021-10-26 [1] Bioconductor
BiocGenerics * 0.40.0 2021-10-26 [1] Bioconductor
BiocNeighbors 1.12.0 2021-10-26 [1] Bioconductor
BiocParallel 1.28.3 2021-12-09 [1] Bioconductor
BiocSingular 1.10.0 2021-10-26 [1] Bioconductor
bitops 1.0-7 2021-04-24 [2] CRAN (R 4.1.2)
bslib 0.3.1 2021-10-06 [1] CRAN (R 4.1.0)
cachem 1.0.6 2021-08-19 [1] CRAN (R 4.1.0)
callr 3.7.0 2021-04-20 [2] CRAN (R 4.1.2)
class * 7.3-19 2021-05-03 [2] CRAN (R 4.1.2)
cli 3.6.1 2023-03-23 [1] CRAN (R 4.1.0)
colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.1.0)
crayon 1.5.1 2022-03-26 [1] CRAN (R 4.1.0)
DBI 1.1.2 2021-12-20 [1] CRAN (R 4.1.0)
DelayedArray 0.20.0 2021-10-26 [1] Bioconductor
DelayedMatrixStats 1.16.0 2021-10-26 [1] Bioconductor
desc 1.4.0 2021-09-28 [2] CRAN (R 4.1.2)
devtools 2.4.2 2021-06-07 [2] CRAN (R 4.1.2)
digest 0.6.29 2021-12-01 [1] CRAN (R 4.1.0)
dplyr * 1.0.9 2022-04-28 [1] CRAN (R 4.1.0)
ellipsis 0.3.2 2021-04-29 [2] CRAN (R 4.1.2)
evaluate 0.14 2019-05-28 [2] CRAN (R 4.1.2)
fansi 1.0.4 2023-01-22 [1] CRAN (R 4.1.0)
farver 2.1.1 2022-07-06 [1] CRAN (R 4.1.0)
fastmap 1.1.0 2021-01-25 [2] CRAN (R 4.1.2)
forcats * 0.5.1 2021-01-27 [2] CRAN (R 4.1.2)
fs 1.5.2 2021-12-08 [1] CRAN (R 4.1.0)
generics 0.1.3 2022-07-05 [1] CRAN (R 4.1.0)
GenomeInfoDb * 1.30.0 2021-10-26 [1] Bioconductor
GenomeInfoDbData 1.2.7 2021-12-03 [1] Bioconductor
GenomicRanges * 1.46.1 2021-11-18 [1] Bioconductor
ggbeeswarm 0.6.0 2017-08-07 [2] CRAN (R 4.1.2)
ggplot2 * 3.3.6 2022-05-03 [1] CRAN (R 4.1.0)
ggrepel 0.9.1 2021-01-15 [2] CRAN (R 4.1.2)
git2r 0.28.0 2021-01-10 [2] CRAN (R 4.1.2)
glue 1.6.0 2021-12-17 [1] CRAN (R 4.1.0)
gridExtra 2.3 2017-09-09 [2] CRAN (R 4.1.2)
gtable 0.3.0 2019-03-25 [2] CRAN (R 4.1.2)
here 1.0.1 2020-12-13 [1] CRAN (R 4.1.0)
highr 0.9 2021-04-16 [2] CRAN (R 4.1.2)
htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.0)
httpuv 1.6.5 2022-01-05 [1] CRAN (R 4.1.0)
IRanges * 2.28.0 2021-10-26 [1] Bioconductor
irlba 2.3.5 2021-12-06 [1] CRAN (R 4.1.0)
jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.1.2)
jsonlite 1.8.0 2022-02-22 [1] CRAN (R 4.1.0)
knitr 1.36 2021-09-29 [1] CRAN (R 4.1.0)
labeling 0.4.2 2020-10-20 [2] CRAN (R 4.1.2)
later 1.3.0 2021-08-18 [1] CRAN (R 4.1.0)
lattice 0.20-45 2021-09-22 [2] CRAN (R 4.1.2)
lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.0)
magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.1.0)
Matrix 1.3-4 2021-06-01 [2] CRAN (R 4.1.2)
MatrixGenerics * 1.6.0 2021-10-26 [1] Bioconductor
matrixStats * 0.62.0 2022-04-19 [1] CRAN (R 4.1.0)
memoise 2.0.1 2021-11-26 [1] CRAN (R 4.1.0)
munsell 0.5.0 2018-06-12 [2] CRAN (R 4.1.2)
pillar 1.7.0 2022-02-01 [1] CRAN (R 4.1.0)
pkgbuild 1.2.0 2020-12-15 [2] CRAN (R 4.1.2)
pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.1.2)
pkgload 1.2.3 2021-10-13 [2] CRAN (R 4.1.2)
prettyunits 1.1.1 2020-01-24 [2] CRAN (R 4.1.2)
processx 3.5.2 2021-04-30 [2] CRAN (R 4.1.2)
promises 1.2.0.1 2021-02-11 [2] CRAN (R 4.1.2)
ps 1.7.1 2022-06-18 [1] CRAN (R 4.1.0)
purrr * 0.3.4 2020-04-17 [2] CRAN (R 4.1.2)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.0)
RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.1.0)
Rcpp 1.0.8.3 2022-03-17 [1] CRAN (R 4.1.0)
RCurl 1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)
remotes 2.4.2 2021-11-30 [1] CRAN (R 4.1.0)
rlang 1.0.3 2022-06-27 [1] CRAN (R 4.1.0)
rmarkdown 2.14 2022-04-25 [1] CRAN (R 4.1.0)
rprojroot 2.0.3 2022-04-02 [1] CRAN (R 4.1.0)
rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.1.0)
rsvd 1.0.5 2021-04-16 [1] CRAN (R 4.1.0)
S4Vectors * 0.32.3 2021-11-21 [1] Bioconductor
sass 0.4.1 2022-03-23 [1] CRAN (R 4.1.0)
ScaledMatrix 1.2.0 2021-10-26 [1] Bioconductor
scales 1.2.1 2022-08-20 [1] CRAN (R 4.1.0)
scater * 1.22.0 2021-10-26 [1] Bioconductor
scuttle * 1.4.0 2021-10-26 [1] Bioconductor
sessioninfo 1.2.0 2021-10-31 [2] CRAN (R 4.1.2)
SingleCellExperiment * 1.16.0 2021-10-26 [1] Bioconductor
sparseMatrixStats 1.6.0 2021-10-26 [1] Bioconductor
stringi 1.7.6 2021-11-29 [1] CRAN (R 4.1.0)
stringr 1.4.0 2019-02-10 [2] CRAN (R 4.1.2)
SummarizedExperiment * 1.24.0 2021-10-26 [1] Bioconductor
testthat 3.1.0 2021-10-04 [2] CRAN (R 4.1.2)
tibble 3.1.7 2022-05-03 [1] CRAN (R 4.1.0)
tidyr * 1.2.0 2022-02-01 [1] CRAN (R 4.1.0)
tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.1.0)
usethis 2.1.3 2021-10-27 [2] CRAN (R 4.1.2)
utf8 1.2.3 2023-01-31 [1] CRAN (R 4.1.0)
vctrs 0.4.1 2022-04-13 [1] CRAN (R 4.1.0)
vipor 0.4.5 2017-03-22 [2] CRAN (R 4.1.2)
viridis 0.6.2 2021-10-13 [1] CRAN (R 4.1.0)
viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.1.0)
whisker 0.4 2019-08-28 [2] CRAN (R 4.1.2)
withr 2.5.0 2022-03-03 [1] CRAN (R 4.1.0)
workflowr 1.7.0 2021-12-21 [1] CRAN (R 4.1.0)
xfun 0.31 2022-05-10 [1] CRAN (R 4.1.0)
XVector 0.34.0 2021-10-26 [1] Bioconductor
yaml 2.3.5 2022-02-21 [1] CRAN (R 4.1.0)
zlibbioc 1.40.0 2021-10-26 [1] Bioconductor
[1] /home/jpullin/R/x86_64-pc-linux-gnu-library/4.1
[2] /apps/easybuild-2022/easybuild/software/MPI/GCC/11.3.0/OpenMPI/4.1.4/R/4.1.2/lib64/R/library
──────────────────────────────────────────────────────────────────────────────