Last updated: 2024-01-01

Checks: 7 0

Knit directory: mage_2020_marker-gene-benchmarking/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190102) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2632193. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Renviron
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .snakemake/
    Ignored:    NSForest/.Rhistory
    Ignored:    NSForest/NS-Forest_v3_Extended_Binary_Markers_Supplmental.csv
    Ignored:    NSForest/NS-Forest_v3_Full_Results.csv
    Ignored:    NSForest/NSForest3_medianValues.csv
    Ignored:    NSForest/NSForest_v3_Final_Result.csv
    Ignored:    NSForest/__pycache__/
    Ignored:    NSForest/data/
    Ignored:    RankCorr/picturedRocks/__pycache__/
    Ignored:    benchmarks/
    Ignored:    config/
    Ignored:    data/cellmarker/
    Ignored:    data/downloaded_data/
    Ignored:    data/expert_annotations/
    Ignored:    data/expert_mgs/
    Ignored:    data/raw_data/
    Ignored:    data/real_data/
    Ignored:    data/sim_data/
    Ignored:    data/sim_mgs/
    Ignored:    data/special_real_data/
    Ignored:    figures/
    Ignored:    logs/
    Ignored:    results/
    Ignored:    weights/

Unstaged changes:
    Deleted:    analysis/expert-mgs-direction.Rmd
    Modified:   smash-fork

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/simulation-validation-analysis.Rmd) and HTML (public/simulation-validation-analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html fcecf65 Jeffrey Pullin 2022-09-09 Build site.
Rmd 0c2eafc Jeffrey Pullin 2022-09-09 Update website
html af96b34 Jeffrey Pullin 2022-08-30 Build site.
Rmd a2056d7 Jeffrey Pullin 2022-08-29 Add more simulation validation analysis
html 0e47874 Jeffrey Pullin 2022-05-04 Build site.
html 8b989e1 Jeffrey Pullin 2022-05-02 Build site.
html 0548273 Jeffrey Pullin 2022-05-02 Build site.
Rmd 50bca7c Jeffrey Pullin 2022-05-02 workflowr::wflow_publish(all = TRUE, republish = TRUE)
html 50bca7c Jeffrey Pullin 2022-05-02 workflowr::wflow_publish(all = TRUE, republish = TRUE)
html 5cc008f Jeffrey Pullin 2022-02-09 Build site.
Rmd d1aca16 Jeffrey Pullin 2022-02-09 Refresh website
Rmd aca9ad2 Jeffrey Pullin 2021-11-29 Various changes made in the last days before thesis submission

library(SingleCellExperiment)
library(dplyr)
library(ggplot2)
library(patchwork)
library(scater)
library(purrr)
library(tidyr)

source(here::here("code", "analysis-utils.R"))
source(here::here("code", "run-utils.R"))

Load data

pbmc3k_sim <- readRDS(
  here::here("data", "sim_data", "standard_sim_1-pbmc3k.rds")
)

lawlor_sim <- readRDS(
  here::here("data", "sim_data", "standard_sim_1-lawlor.rds")
)

zeisel_sim <- readRDS(
  here::here("data", "sim_data", "standard_sim_1-zeisel.rds")
)

endothelial_sim <- readRDS(
  here::here("data", "sim_data", "standard_sim_1-endothelial.rds")
)
pbmc3k <- readRDS(
  here::here("data", "real_data", "pbmc3k.rds")
)

lawlor <- readRDS(
  here::here("data", "real_data", "lawlor.rds")
)

zeisel <- readRDS(
  here::here("data", "real_data", "zeisel.rds")
)

endothelial <- readRDS(
  here::here("data", "real_data", "endothelial.rds")
)
pbmc3k_mg_info <- readRDS(
  here::here("data", "sim_mgs", "mg-standard_sim_1-pbmc3k.rds")
)

lawlor_mg_info <- readRDS(
  here::here("data", "sim_mgs", "mg-standard_sim_1-lawlor.rds")
)

zeisel_mg_info <- readRDS(
  here::here("data", "sim_mgs", "mg-standard_sim_1-zeisel.rds")
)

endothelial_mg_info <- readRDS(
  here::here("data", "sim_mgs", "mg-standard_sim_1-endothelial.rds")
)
pbmc3k_result <- readRDS(
  here::here("results", "real_data", "pbmc3k-seurat_wilcox.rds")
)

lawlor_result <- readRDS(
  here::here("results", "real_data", "lawlor-seurat_wilcox.rds")
)

zeisel_result <- readRDS(
  here::here("results", "real_data", "zeisel-seurat_wilcox.rds")
)

endothelial_result <- readRDS(
  here::here("results", "real_data", "endothelial-seurat_wilcox.rds")
)
pbmc3k_sim_result <- readRDS(
  here::here("results", "sim_data", "standard_sim_1-pbmc3k-seurat_wilcox.rds")
)

lawlor_sim_result <- readRDS(
  here::here("results", "sim_data", "standard_sim_1-lawlor-seurat_wilcox.rds")
)

zeisel_sim_result <- readRDS(
  here::here("results", "sim_data", "standard_sim_1-zeisel-seurat_wilcox.rds")
)

endothelial_sim_result <- readRDS(
  here::here("results", "sim_data", "standard_sim_1-endothelial-seurat_wilcox.rds")
)
pbmc3k_expert_mgs <- readRDS(
  here::here("data", "expert_mgs", "pbmc3k_expert_mgs.rds")
)

lawlor_expert_mgs <- readRDS(
  here::here("data", "expert_mgs", "lawlor_expert_mgs.rds")
)
plot_specifc_mgs <- function(sce, mg_info, index = c(1, 10, 20, 30), 
                             direction = "up", cluster_ind = 1) {
  
  last_index <- index[length(index)]
  top_mgs <- get_top_true_mgs(mg_info[[cluster_ind]], direction = "up", 
                   n = last_index + 1)
  specific_mgs <- top_mgs$gene[index] 
  plotExpression(sce, x = "label", features = specific_mgs)
}

plot_logfc_sim_mgs <- function(sce, mg_info, n = "all", direction = "up", 
                           cluster_ind = 1) {
  
  top_mgs <- get_top_true_mgs(mg_info[[cluster_ind]], direction = "up", 
                              n = n)

  if (n == "all") {
    n <- nrow(top_mgs)
  }
     
  clusters <- rep(paste0("Group", cluster_ind), n)
  log_fc <- calculate_log_fc(sce, top_mgs$gene, clusters)
   
  plot_data <- tibble(
    log_fc,
    index = 1:n
  ) 
  
  ggplot(plot_data, aes(x = index, y = log_fc)) + 
    geom_point() + 
    geom_smooth(se = FALSE, formula = y ~ x, method = "loess") + 
    labs(
      x = "Index", 
      y = "Log fold-change"
    ) + 
    theme_bw()
}

plot_logfc_real_mgs <- function(sce, result, cluster, n = 200, direction = "up") {
 
  top_mgs <- result %>% 
    pluck("result") %>% 
    filter(cluster == !!cluster) %>% 
    get_top_sel_mgs(direction = "up", n = n)

  clusters <- rep(cluster, n)
  log_fc <- calculate_log_fc(sce, top_mgs$gene, clusters)
   
  plot_data <- tibble(
    log_fc,
    index = 1:n
  ) 
  
  ggplot(plot_data, aes(x = index, y = log_fc)) + 
    geom_point() + 
    geom_smooth(se = FALSE, formula = y ~ x, method = "loess") + 
    labs(
      x = "Index", 
      y = "Log fold-change"
    ) + 
    theme_bw()
}
pbmc3k_top_sim_mgs <- pbmc3k_mg_info %>% 
  map(~ get_top_true_mgs(.x, n = 3, direction = "up")) %>% 
  imap(~ mutate(.x, cluster = .y)) %>% 
  bind_rows() %>% 
  mutate(cluster = paste0("Group", substr(cluster, 7, 7)))

pbmc3k_top_expert_mgs <- pbmc3k_expert_mgs %>% 
  unnest(expert_mgs) %>% 
  dplyr::rename(gene = expert_mgs)

pbmc3k_top_sim_logfcs <- calculate_log_fc(
  pbmc3k_sim, 
  genes = pbmc3k_top_sim_mgs$gene, 
  clusters = pbmc3k_top_sim_mgs$cluster
)

pbmc3k_top_expert_logfcs <- calculate_log_fc(
  pbmc3k, 
  genes = pbmc3k_top_expert_mgs$gene, 
  clusters = pbmc3k_top_expert_mgs$cluster
)

tibble(sim = pbmc3k_top_sim_logfcs, expert = pbmc3k_top_expert_logfcs) %>% 
  pivot_longer(cols = everything(), names_to = "type", values_to = "logfc") %>% 
  ggplot(aes(x = type, y = logfc)) + 
  geom_boxplot() + 
  coord_flip() + 
  theme_bw() + 
  labs(
    x = "",
    y = "One-vs-rest log fold-change"
  )

lawlor_top_sim_mgs <- lawlor_mg_info %>% 
  map(~ get_top_true_mgs(.x, n = 1, direction = "up")) %>% 
  imap(~ mutate(.x, cluster = .y)) %>% 
  bind_rows() %>% 
  mutate(cluster = paste0("Group", substr(cluster, 7, 7)))

lawlor_top_expert_mgs <- lawlor_expert_mgs %>% 
  unnest(expert_mgs) %>% 
  rename(gene = expert_mgs)

lawlor_top_sim_logfcs <- calculate_log_fc(
  lawlor_sim, 
  genes = lawlor_top_sim_mgs$gene, 
  clusters = lawlor_top_sim_mgs$cluster
)

lawlor_top_expert_logfcs <- calculate_log_fc(
  lawlor, 
  genes = lawlor_top_expert_mgs$gene, 
  clusters = lawlor_top_expert_mgs$cluster
)

bind_rows(
  tibble(type = "sim", logfc = lawlor_top_sim_logfcs),
  tibble(type = "expert", logfc = lawlor_top_expert_logfcs)
) %>% 
  ggplot(aes(x = type, y = logfc)) + 
  geom_boxplot() + 
  coord_flip() + 
  theme_bw() + 
  labs(
    x = "",
    y = "One-vs-rest log fold-change"
  )

expert_vs_simulated_lfc <- bind_rows(
  tibble(type = "Simulated", data = "Lawlor", 
         logfc = lawlor_top_sim_logfcs),
  tibble(type = "Expert-annotated", data = "Lawlor", 
         logfc = lawlor_top_expert_logfcs),
  tibble(type = "Simulated", data = "pbmc3k", 
         logfc = pbmc3k_top_sim_logfcs),
  tibble(type = "Expert-annotated", data = "pbmc3k", 
         logfc = pbmc3k_top_expert_logfcs)
) %>% 
  ggplot(aes(x = data, y = logfc, fill = data)) + 
  geom_boxplot() + 
  coord_flip() + 
  facet_grid(rows = vars(type)) + 
  theme_bw() + 
  labs(
    x = "",
    y = "One-vs-rest log fold-change"
  ) + 
  guides(fill = "none")

ggsave(
  here::here("figures", "final", "simulated-vs-expert-lfc.pdf"), 
  expert_vs_simulated_lfc, 
  width = 12,
  height = 12,
  units = "in"
)

Simulated log fold-change curves

plot_logfc_sim_mgs(pbmc3k_sim, pbmc3k_mg_info) 

plot_logfc_sim_mgs(zeisel_sim, zeisel_mg_info) 

plot_logfc_sim_mgs(lawlor_sim, lawlor_mg_info) 

plot_logfc_sim_mgs(endothelial_sim, endothelial_mg_info) 

Real log fold-change curves

plot_logfc_real_mgs(pbmc3k, pbmc3k_result, cluster = "B") 

#plot_logfc_real_mgs(zeisel, zeisel_result, cluster = "microglia") 
plot_logfc_real_mgs(lawlor, lawlor_result, cluster = "Alpha") 

Plot specific cluster examples

plot_specifc_mgs(pbmc3k_sim, pbmc3k_mg_info, c(12, 32, 52))

plot_specifc_mgs(zeisel_sim, zeisel_mg_info, c(1, 10, 20))

plot_specifc_mgs(lawlor_sim, lawlor_mg_info, c(1, 10, 20))

plot_specifc_mgs(lawlor_sim, lawlor_mg_info, c(1, 10, 20))

pbmc3k_mg_info[[1]] %>% 
  get_top_true_mgs(n = 20, direction = "up", up_mean_filter = 0.1)
# A tibble: 20 × 8
   gene     gene_mean    fc mean_score median_score max_score direction de_value
   <chr>        <dbl> <dbl>      <dbl>        <dbl>     <dbl> <chr>        <dbl>
 1 Gene45       0.313  3.98       3.98         3.17      6.39 up            23.9
 2 Gene778      0.216  3.73       3.73         2.91      6.20 up            18.3
 3 Gene1916     0.104  3.64       3.64         2.95      5.72 up            19.1
 4 Gene82       0.232  3.57       3.57         2.80      5.86 up            16.5
 5 Gene1637     0.132  3.48       3.48         3.48      3.48 up            32.5
 6 Gene565      0.235  3.47       3.47         2.66      5.88 up            14.3
 7 Gene1228     0.175  3.46       3.46         3.46      3.46 up            31.7
 8 Gene1087     0.105  3.30       3.30         3.30      3.30 up            27.0
 9 Gene189      0.234  3.29       3.29         3.28      6.39 up            26.5
10 Gene37       0.184  3.27       3.27         3.27      3.27 up            26.4
11 Gene823      0.152  3.21       3.21         3.21      3.21 up            24.8
12 Gene1576     0.242  3.20       3.20         3.20      3.20 up            24.5
13 Gene1227     0.200  3.16       3.16         3.16      3.16 up            23.6
14 Gene1904     0.110  3.15       3.15         3.15      3.15 up            23.4
15 Gene1868     0.254  3.15       3.15         3.15      3.15 up            23.3
16 Gene167      0.647  3.14       3.14         3.14      3.14 up            23.1
17 Gene366      0.121  3.13       3.13         3.13      3.13 up            22.9
18 Gene1604     0.145  3.11       3.11         3.11      3.11 up            22.4
19 Gene1481     0.487  3.10       3.10         3.10      3.10 up            22.2
20 Gene1894     0.227  3.09       3.09         3.09      3.09 up            22.0
pbmc3k_sim_result$result %>% 
  filter(cluster == "Group1") %>% 
  print(n = 30)
# A tibble: 510 × 7
     p_value p_value_adj cluster log_fc gene     raw_statistic scaled_statistic
       <dbl>       <dbl> <fct>    <dbl> <chr>            <dbl>            <dbl>
 1 4.54e-272   9.05e-269 Group1    3.60 Gene1080             0                0
 2 3.28e-271   6.54e-268 Group1    3.67 Gene319              0                0
 3 9.54e-271   1.90e-267 Group1    3.41 Gene376              0                0
 4 1.17e-265   2.33e-262 Group1    3.47 Gene1904             0                0
 5 5.14e-265   1.02e-261 Group1    4.15 Gene1637             0                0
 6 4.75e-263   9.47e-260 Group1    4.32 Gene37               0                0
 7 1.26e-262   2.50e-259 Group1    3.19 Gene1916             0                0
 8 9.40e-261   1.87e-257 Group1    3.96 Gene823              0                0
 9 1.22e-260   2.42e-257 Group1    4.41 Gene1228             0                0
10 1.40e-260   2.78e-257 Group1    3.64 Gene1604             0                0
11 1.07e-255   2.13e-252 Group1    4.05 Gene158              0                0
12 6.75e-255   1.34e-251 Group1    3.91 Gene82               0                0
13 3.77e-253   7.50e-250 Group1    3.92 Gene467              0                0
14 4.46e-253   8.88e-250 Group1    3.39 Gene1222             0                0
15 2.27e-252   4.52e-249 Group1    4.00 Gene778              0                0
16 2.50e-252   4.98e-249 Group1    4.21 Gene1227             0                0
17 9.19e-252   1.83e-248 Group1    4.69 Gene45               0                0
18 2.36e-250   4.70e-247 Group1    3.05 Gene1050             0                0
19 1.74e-249   3.47e-246 Group1    3.50 Gene1087             0                0
20 2.51e-246   4.99e-243 Group1    4.12 Gene151              0                0
21 3.07e-246   6.12e-243 Group1    3.66 Gene532              0                0
22 8.55e-242   1.70e-238 Group1    4.28 Gene1576             0                0
23 3.57e-241   7.11e-238 Group1    3.40 Gene1250             0                0
24 5.65e-240   1.12e-236 Group1    4.37 Gene1868             0                0
25 7.04e-240   1.40e-236 Group1    2.94 Gene283              0                0
26 1.36e-238   2.70e-235 Group1    4.12 Gene649              0                0
27 4.35e-238   8.67e-235 Group1    3.29 Gene1900             0                0
28 5.47e-238   1.09e-234 Group1    4.43 Gene860              0                0
29 1.38e-236   2.75e-233 Group1    4.20 Gene1894             0                0
30 7.13e-236   1.42e-232 Group1    3.68 Gene841              0                0
# … with 480 more rows
pbmc3k_sim_result$result %>% 
  filter(cluster == "Group1") %>% 
  mutate(n = 1:n()) %>% 
  filter(gene %in% c("Gene1270", "Gene46", "Gene865")) %>% 
  print(n = 30)
# A tibble: 1 × 8
   p_value p_value_adj cluster log_fc gene  raw_statistic scaled_statistic     n
     <dbl>       <dbl> <fct>    <dbl> <chr>         <dbl>            <dbl> <int>
1 3.70e-50    7.38e-47 Group1   -1.50 Gene…             0                0   110
plotExpression(pbmc3k_sim, x = "label", 
               features = c("Gene90", "Gene1413", "Gene1098"))

plotExpression(pbmc3k_sim, x = "label", 
               features = c("Gene743", "Gene579"))

plotExpression(pbmc3k_sim, x = "label", 
               features = c("Gene1270", "Gene46", "Gene865"))

plotExpression(pbmc3k_sim, x = "label", 
               features = c("Gene46"))

Down-regulated marker genes analysis

lawlor_mg_info %>% 
  pluck("group_1") %>% 
  filter(gene_mean > 0.1) %>% 
  arrange(desc(mean_score))
# A tibble: 2,000 × 8
   gene     gene_mean    fc mean_score median_score max_score direction de_value
   <chr>        <dbl> <dbl>      <dbl>        <dbl>     <dbl> <chr>        <dbl>
 1 Gene1232     151.   3.99       3.99         3.24      6.24 up            25.5
 2 Gene1840      35.1  3.94       3.94         3.24      6.05 up            25.6
 3 Gene65       146.   3.88       3.88         3.05      6.40 up            21.0
 4 Gene890       76.8  3.75       3.75         2.95      6.13 up            19.2
 5 Gene5        103.   3.71       3.71         2.95      5.98 up            19.1
 6 Gene1619     141.   3.70       3.70         2.95      5.97 up            19.1
 7 Gene1324     110.   3.64       3.64         2.92      5.80 up            18.5
 8 Gene975      117.   3.61       3.61         2.85      5.89 up            17.3
 9 Gene786      108.   3.57       3.57         2.88      5.66 up            17.8
10 Gene926      120.   3.55       3.55         2.84      5.69 up            17.1
# … with 1,990 more rows
plotExpression(
  lawlor_sim, 
  x = "label", 
  c("Gene1333", "Gene151")  
)

zeisel_mg_info %>% 
  pluck("group_1") %>% 
  filter(gene_mean > 0.1) %>% 
  arrange(desc(mean_score))
# A tibble: 1,938 × 8
   gene     gene_mean    fc mean_score median_score max_score direction de_value
   <chr>        <dbl> <dbl>      <dbl>        <dbl>     <dbl> <chr>        <dbl>
 1 Gene184      0.523  4.95       4.95         4.87      6.57 up            32.0
 2 Gene1031     0.599  4.50       4.50         4.46      6.15 up            19.0
 3 Gene1025     0.957  4.03       4.03         3.21      6.49 up            24.8
 4 Gene71       0.191  4.00       4.00         3.14      6.57 up            23.1
 5 Gene1298     1.18   3.96       3.96         3.18      6.30 up            24.1
 6 Gene537      0.818  3.94       3.94         3.19      6.18 up            24.3
 7 Gene761      1.98   3.93       3.93         3.05      6.58 up            21.2
 8 Gene999      3.49   3.82       3.82         3.10      6.00 up            22.1
 9 Gene1203     6.88   3.81       3.81         3.14      5.79 up            23.2
10 Gene167      2.60   3.63       3.63         2.90      5.80 up            18.2
# … with 1,928 more rows
plotExpression(
  zeisel_sim, 
  x = "label", 
  c("Gene924", "Gene844")  
)

plotExpression(
  zeisel_sim, 
  x = "label", 
  c("Gene572", "Gene858")  
)

pbmc3k_mg_info %>% 
  pluck("group_1") %>% 
  filter(gene_mean > 0.1) %>% 
  arrange(mean_score)
# A tibble: 1,275 × 8
   gene     gene_mean    fc mean_score median_score max_score direction de_value
   <chr>        <dbl> <dbl>      <dbl>        <dbl>     <dbl> <chr>        <dbl>
 1 Gene1638     0.391 -4.13      -4.13        -3.33     -3.33 down        0.0358
 2 Gene1011     0.381 -3.91      -3.91        -3.18     -3.18 down        0.0418
 3 Gene626      0.126 -3.83      -3.83        -3.05     -3.05 down        0.0473
 4 Gene1251     0.155 -3.78      -3.78        -2.96     -2.96 down        0.0516
 5 Gene141      0.104 -3.71      -3.71        -2.92     -2.92 down        0.0539
 6 Gene548      0.391 -3.60      -3.60        -2.90     -2.90 down        0.0551
 7 Gene342      0.206 -3.54      -3.54        -2.79     -2.79 down        0.0615
 8 Gene1623     0.936 -3.48      -3.48        -2.66     -2.66 down        0.0696
 9 Gene60       0.589 -3.47      -3.47        -3.47     -3.47 down        0.0312
10 Gene1435     0.642 -3.46      -3.46        -3.46     -3.46 down        0.0313
# … with 1,265 more rows
plotExpression(
  pbmc3k_sim,
  x = "label", 
  c("Gene931", "Gene1081", "Gene624")
)

Gene mean filtering analysis

pbmc3k_sim$Group <- substr(
  pbmc3k_sim$label, 
  6,
  6
)

mgs_no_mean_filter <- pbmc3k_mg_info %>% 
  pluck("group_1") %>% 
  arrange(desc(mean_score)) %>% 
  dplyr::slice(1:4) %>% 
  pull(gene)

mgs_with_mean_filter <- pbmc3k_mg_info %>% 
  pluck("group_1") %>% 
  filter(gene_mean > 0.05) %>% 
  arrange(desc(mean_score)) %>% 
  dplyr::slice(1:4) %>% 
  pull(gene)

no_mean_filter_plot <- plotExpression(
  pbmc3k_sim, 
  x = "Group", 
  mgs_no_mean_filter
) + 
  labs(
    title = "Without mean filter"
  ) 

with_mean_filter_plot <- plotExpression(
  pbmc3k_sim, 
  x = "Group", 
  mgs_with_mean_filter
) + 
  labs(
    title = "With mean filter"
  ) 

no_mean_filter_plot + with_mean_filter_plot + 
  plot_annotation(tag_levels = "a") &
  theme(plot.tag = element_text(size = 18))

# standard_sim_1_pbmc3k_seurat_wilcox <- readRDS(
#   here::here("results", "sim_data",
#              "standard_sim_1-pbmc3k-seurat_wilcox.rds")
# )
# 
# standard_sim_1_pbmc3k_seurat_t <- readRDS(
#   here::here("results", "sim_data",
#              "standard_sim_1-pbmc3k-seurat_t.rds")
# )
# 
# n <- 40
# 
# seurat_wilcox_log_fc <- standard_sim_1_pbmc3k_seurat_wilcox %>% 
#   pluck("result") %>% 
#   filter(cluster == "Group1") %>% 
#   filter(log_fc > 0) %>% 
#   dplyr::slice(1:n) %>% 
#   pull(log_fc)
# 
# seurat_t_log_fc <- standard_sim_1_pbmc3k_seurat_t %>% 
#   pluck("result") %>% 
#   filter(cluster == "Group1") %>% 
#   filter(log_fc > 0) %>% 
#   dplyr::slice(1:n) %>% 
#   pull(log_fc)
# 
# top_mgs_seurat_wilcox <- standard_sim_1_pbmc3k_seurat_wilcox %>% 
#   pluck("result") %>% 
#   filter(cluster == "Group1") %>% 
#   filter(log_fc > 0) %>% 
#   dplyr::slice(1:n) %>% 
#   pull(gene)
# 
# top_mgs_no_filter <- mg_info_standard_sim_1_pbmc3k %>% 
#   pluck("group_1") %>% 
#   arrange(desc(mean_score)) %>% 
#   dplyr::slice(1:n) %>% 
#   pull(gene)
# 
# top_mgs_no_filter_log_fc <- standard_sim_1_pbmc3k_seurat_wilcox %>% 
#   pluck("result") %>% 
#   filter(cluster == "Group1") %>% 
#   filter(gene %in% top_mgs_no_filter) %>% 
#   pull(log_fc)
# 
# 
# top_mgs_no_filter_log_fc[[40]] <- mean(top_mgs_no_filter_log_fc)
# 
# top_mgs_with_filter <- mg_info_standard_sim_1_pbmc3k %>% 
#   pluck("group_1") %>% 
#   filter(gene_mean > 0.1) %>% 
#   arrange(desc(mean_score)) %>% 
#   dplyr::slice(1:n) %>% 
#   pull(gene)
# 
# top_mgs_with_filter_log_fc <- standard_sim_1_pbmc3k_seurat_wilcox %>% 
#   pluck("result") %>% 
#   filter(cluster == "Group1") %>% 
#   filter(gene %in% top_mgs_with_filter) %>% 
#   pull(log_fc)
# 
# tibble(
#   filter_logfc = top_mgs_with_filter_log_fc, 
#   nofilter_logfc = top_mgs_no_filter_log_fc, 
#   wilcox_logfc = seurat_wilcox_log_fc,
#   t_logfc = seurat_t_log_fc,
# ) %>% 
#   pivot_longer(
#     cols = everything(), 
#     names_pattern = "(.*)_.*",
#     values_to = "log_fc", 
#     names_to = "method"
#   ) %>% 
#   mutate(score = if_else(
#     method %in% c("filter", "nofilter"),
#     "Scored", 
#     "Selected"
#     )
#   ) %>% 
#   mutate(method = case_when(
#     method == "filter" ~ "With mean filter", 
#     method == "nofilter" ~ "Without mean filter", 
#     method == "t" ~ "Seurat t-test", 
#     method == "wilcox" ~ "Seurat Wilcoxon"
#   )) %>% 
#   ggplot(aes(x = factor(method), y = log_fc, fill = score)) + 
#   geom_boxplot() + 
#   coord_flip() + 
#   labs(
#     fill = "Method",
#     y = "One-vs-rest log fold change",
#     x = "Marker gene type"
#   ) + 
#   scale_y_continuous(breaks = c(1, 2, 4, 6)) + 
#   theme_bw()
# top_mgs_with_filter <- mg_info_standard_sim_1_pbmc3k %>% 
#   pluck("group_1") %>% 
#   filter(gene_mean > 0.1) %>% 
#   arrange(desc(mean_score)) %>% 
#   dplyr::slice(1:80) %>% 
#   mutate(rank = 1:n())
# 
# m_1 <- rowMeans(
#   expm1(logcounts(sim_1_pbmc3k[, sim_1_pbmc3k$label == "Group1"]))
# )
# m_2 <- rowMeans(
#   expm1(logcounts(sim_1_pbmc3k[, sim_1_pbmc3k$label != "Group1"]))
# )
# log_fcs <- log(m_1 + 1, base = 2) - log(m_2 + 1, base = 2)
# log_fcs_tib <- tibble(gene = rownames(sim_1_pbmc3k), log_fc = log_fcs)
# 
# top_mgs_with_filter <- top_mgs_with_filter %>% 
#   left_join(log_fcs_tib, by = "gene")
# 
# top_mgs_with_filter %>% 
#   ggplot(aes(x = rank, y = log_fc)) + 
#   geom_point(colour = "seagreen") + 
#   geom_smooth(method = "loess", formula = y ~ x) + 
#   labs(
#     x = "True marker gene rank", 
#     y = "Two sample log fold change"
#   ) + 
#   theme_bw()
# ```
# 
# 
# ```{r mean-histogram}
# mg_info_standard_sim_1_pbmc3k %>% 
#   pluck("group_1") %>% 
#   ggplot(aes(x = gene_mean)) + 
#   geom_histogram(
#     bins = 20, 
#     fill = "seagreen",
#     colour = "black"
#   ) + 
#   labs(
#     x = "Gene mean",
#     y = "Count", 
#     title = "Histogram of simulated gene means"
#   ) + 
#   theme_bw()
# 
# standard_sim_1_pbmc3k %>% 
#   logcounts() %>% 
#   rowMeans() %>%
#   tibble() %>% 
#   setNames("mean") %>% 
#   ggplot(aes(x = mean)) +
#   geom_histogram()

devtools::session_info()
─ Session info  ──────────────────────────────────────────────────────────────
 hash: tear-off calendar, railway car, person in bed: dark skin tone

 setting  value
 version  R version 4.1.2 (2021-11-01)
 os       Red Hat Enterprise Linux 9.2 (Plow)
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_AU.UTF-8
 ctype    en_AU.UTF-8
 tz       Australia/Melbourne
 date     2024-01-01
 pandoc   2.18 @ /apps/easybuild-2022/easybuild/software/MPI/GCC/11.3.0/OpenMPI/4.1.4/RStudio-Server/2022.07.2+576-Java-11-R-4.1.2/bin/pandoc/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version  date (UTC) lib source
 assertthat             0.2.1    2019-03-21 [2] CRAN (R 4.1.2)
 beachmat               2.10.0   2021-10-26 [1] Bioconductor
 beeswarm               0.4.0    2021-06-01 [2] CRAN (R 4.1.2)
 Biobase              * 2.54.0   2021-10-26 [1] Bioconductor
 BiocGenerics         * 0.40.0   2021-10-26 [1] Bioconductor
 BiocNeighbors          1.12.0   2021-10-26 [1] Bioconductor
 BiocParallel           1.28.3   2021-12-09 [1] Bioconductor
 BiocSingular           1.10.0   2021-10-26 [1] Bioconductor
 bitops                 1.0-7    2021-04-24 [2] CRAN (R 4.1.2)
 bslib                  0.3.1    2021-10-06 [1] CRAN (R 4.1.0)
 cachem                 1.0.6    2021-08-19 [1] CRAN (R 4.1.0)
 callr                  3.7.0    2021-04-20 [2] CRAN (R 4.1.2)
 cli                    3.6.1    2023-03-23 [1] CRAN (R 4.1.0)
 colorspace             2.1-0    2023-01-23 [1] CRAN (R 4.1.0)
 cowplot                1.1.1    2020-12-30 [2] CRAN (R 4.1.2)
 crayon                 1.5.1    2022-03-26 [1] CRAN (R 4.1.0)
 DBI                    1.1.2    2021-12-20 [1] CRAN (R 4.1.0)
 DelayedArray           0.20.0   2021-10-26 [1] Bioconductor
 DelayedMatrixStats     1.16.0   2021-10-26 [1] Bioconductor
 desc                   1.4.0    2021-09-28 [2] CRAN (R 4.1.2)
 devtools               2.4.2    2021-06-07 [2] CRAN (R 4.1.2)
 digest                 0.6.29   2021-12-01 [1] CRAN (R 4.1.0)
 dplyr                * 1.0.9    2022-04-28 [1] CRAN (R 4.1.0)
 ellipsis               0.3.2    2021-04-29 [2] CRAN (R 4.1.2)
 evaluate               0.14     2019-05-28 [2] CRAN (R 4.1.2)
 fansi                  1.0.4    2023-01-22 [1] CRAN (R 4.1.0)
 farver                 2.1.1    2022-07-06 [1] CRAN (R 4.1.0)
 fastmap                1.1.0    2021-01-25 [2] CRAN (R 4.1.2)
 fs                     1.5.2    2021-12-08 [1] CRAN (R 4.1.0)
 generics               0.1.3    2022-07-05 [1] CRAN (R 4.1.0)
 GenomeInfoDb         * 1.30.0   2021-10-26 [1] Bioconductor
 GenomeInfoDbData       1.2.7    2021-12-03 [1] Bioconductor
 GenomicRanges        * 1.46.1   2021-11-18 [1] Bioconductor
 ggbeeswarm             0.6.0    2017-08-07 [2] CRAN (R 4.1.2)
 ggplot2              * 3.3.6    2022-05-03 [1] CRAN (R 4.1.0)
 ggrepel                0.9.1    2021-01-15 [2] CRAN (R 4.1.2)
 git2r                  0.28.0   2021-01-10 [2] CRAN (R 4.1.2)
 glue                   1.6.0    2021-12-17 [1] CRAN (R 4.1.0)
 gridExtra              2.3      2017-09-09 [2] CRAN (R 4.1.2)
 gtable                 0.3.0    2019-03-25 [2] CRAN (R 4.1.2)
 here                   1.0.1    2020-12-13 [1] CRAN (R 4.1.0)
 highr                  0.9      2021-04-16 [2] CRAN (R 4.1.2)
 htmltools              0.5.2    2021-08-25 [1] CRAN (R 4.1.0)
 httpuv                 1.6.5    2022-01-05 [1] CRAN (R 4.1.0)
 IRanges              * 2.28.0   2021-10-26 [1] Bioconductor
 irlba                  2.3.5    2021-12-06 [1] CRAN (R 4.1.0)
 jquerylib              0.1.4    2021-04-26 [2] CRAN (R 4.1.2)
 jsonlite               1.8.0    2022-02-22 [1] CRAN (R 4.1.0)
 knitr                  1.36     2021-09-29 [1] CRAN (R 4.1.0)
 labeling               0.4.2    2020-10-20 [2] CRAN (R 4.1.2)
 later                  1.3.0    2021-08-18 [1] CRAN (R 4.1.0)
 lattice                0.20-45  2021-09-22 [2] CRAN (R 4.1.2)
 lifecycle              1.0.1    2021-09-24 [1] CRAN (R 4.1.0)
 magrittr               2.0.3    2022-03-30 [1] CRAN (R 4.1.0)
 Matrix                 1.3-4    2021-06-01 [2] CRAN (R 4.1.2)
 MatrixGenerics       * 1.6.0    2021-10-26 [1] Bioconductor
 matrixStats          * 0.62.0   2022-04-19 [1] CRAN (R 4.1.0)
 memoise                2.0.1    2021-11-26 [1] CRAN (R 4.1.0)
 mgcv                   1.8-38   2021-10-06 [2] CRAN (R 4.1.2)
 munsell                0.5.0    2018-06-12 [2] CRAN (R 4.1.2)
 nlme                   3.1-153  2021-09-07 [2] CRAN (R 4.1.2)
 patchwork            * 1.1.1    2020-12-17 [2] CRAN (R 4.1.2)
 pillar                 1.7.0    2022-02-01 [1] CRAN (R 4.1.0)
 pkgbuild               1.2.0    2020-12-15 [2] CRAN (R 4.1.2)
 pkgconfig              2.0.3    2019-09-22 [2] CRAN (R 4.1.2)
 pkgload                1.2.3    2021-10-13 [2] CRAN (R 4.1.2)
 prettyunits            1.1.1    2020-01-24 [2] CRAN (R 4.1.2)
 processx               3.5.2    2021-04-30 [2] CRAN (R 4.1.2)
 promises               1.2.0.1  2021-02-11 [2] CRAN (R 4.1.2)
 ps                     1.7.1    2022-06-18 [1] CRAN (R 4.1.0)
 purrr                * 0.3.4    2020-04-17 [2] CRAN (R 4.1.2)
 R6                     2.5.1    2021-08-19 [1] CRAN (R 4.1.0)
 Rcpp                   1.0.8.3  2022-03-17 [1] CRAN (R 4.1.0)
 RCurl                  1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)
 remotes                2.4.2    2021-11-30 [1] CRAN (R 4.1.0)
 rlang                  1.0.3    2022-06-27 [1] CRAN (R 4.1.0)
 rmarkdown              2.14     2022-04-25 [1] CRAN (R 4.1.0)
 rprojroot              2.0.3    2022-04-02 [1] CRAN (R 4.1.0)
 rstudioapi             0.14     2022-08-22 [1] CRAN (R 4.1.0)
 rsvd                   1.0.5    2021-04-16 [1] CRAN (R 4.1.0)
 S4Vectors            * 0.32.3   2021-11-21 [1] Bioconductor
 sass                   0.4.1    2022-03-23 [1] CRAN (R 4.1.0)
 ScaledMatrix           1.2.0    2021-10-26 [1] Bioconductor
 scales                 1.2.1    2022-08-20 [1] CRAN (R 4.1.0)
 scater               * 1.22.0   2021-10-26 [1] Bioconductor
 scuttle              * 1.4.0    2021-10-26 [1] Bioconductor
 sessioninfo            1.2.0    2021-10-31 [2] CRAN (R 4.1.2)
 SingleCellExperiment * 1.16.0   2021-10-26 [1] Bioconductor
 sparseMatrixStats      1.6.0    2021-10-26 [1] Bioconductor
 stringi                1.7.6    2021-11-29 [1] CRAN (R 4.1.0)
 stringr                1.4.0    2019-02-10 [2] CRAN (R 4.1.2)
 SummarizedExperiment * 1.24.0   2021-10-26 [1] Bioconductor
 testthat               3.1.0    2021-10-04 [2] CRAN (R 4.1.2)
 tibble                 3.1.7    2022-05-03 [1] CRAN (R 4.1.0)
 tidyr                * 1.2.0    2022-02-01 [1] CRAN (R 4.1.0)
 tidyselect             1.1.2    2022-02-21 [1] CRAN (R 4.1.0)
 usethis                2.1.3    2021-10-27 [2] CRAN (R 4.1.2)
 utf8                   1.2.3    2023-01-31 [1] CRAN (R 4.1.0)
 vctrs                  0.4.1    2022-04-13 [1] CRAN (R 4.1.0)
 vipor                  0.4.5    2017-03-22 [2] CRAN (R 4.1.2)
 viridis                0.6.2    2021-10-13 [1] CRAN (R 4.1.0)
 viridisLite            0.4.2    2023-05-02 [1] CRAN (R 4.1.0)
 whisker                0.4      2019-08-28 [2] CRAN (R 4.1.2)
 withr                  2.5.0    2022-03-03 [1] CRAN (R 4.1.0)
 workflowr              1.7.0    2021-12-21 [1] CRAN (R 4.1.0)
 xfun                   0.31     2022-05-10 [1] CRAN (R 4.1.0)
 XVector                0.34.0   2021-10-26 [1] Bioconductor
 yaml                   2.3.5    2022-02-21 [1] CRAN (R 4.1.0)
 zlibbioc               1.40.0   2021-10-26 [1] Bioconductor

 [1] /home/jpullin/R/x86_64-pc-linux-gnu-library/4.1
 [2] /apps/easybuild-2022/easybuild/software/MPI/GCC/11.3.0/OpenMPI/4.1.4/R/4.1.2/lib64/R/library

──────────────────────────────────────────────────────────────────────────────