Last updated: 2024-01-01

Checks: 7 0

Knit directory: mage_2020_marker-gene-benchmarking/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190102) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2632193. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Renviron
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .snakemake/
    Ignored:    NSForest/.Rhistory
    Ignored:    NSForest/NS-Forest_v3_Extended_Binary_Markers_Supplmental.csv
    Ignored:    NSForest/NS-Forest_v3_Full_Results.csv
    Ignored:    NSForest/NSForest3_medianValues.csv
    Ignored:    NSForest/NSForest_v3_Final_Result.csv
    Ignored:    NSForest/__pycache__/
    Ignored:    NSForest/data/
    Ignored:    RankCorr/picturedRocks/__pycache__/
    Ignored:    benchmarks/
    Ignored:    config/
    Ignored:    data/cellmarker/
    Ignored:    data/downloaded_data/
    Ignored:    data/expert_annotations/
    Ignored:    data/expert_mgs/
    Ignored:    data/raw_data/
    Ignored:    data/real_data/
    Ignored:    data/sim_data/
    Ignored:    data/sim_mgs/
    Ignored:    data/special_real_data/
    Ignored:    figures/
    Ignored:    logs/
    Ignored:    results/
    Ignored:    weights/

Unstaged changes:
    Deleted:    analysis/expert-mgs-direction.Rmd
    Modified:   smash-fork

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/time.Rmd) and HTML (public/time.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html fcecf65 Jeffrey Pullin 2022-09-09 Build site.
html af96b34 Jeffrey Pullin 2022-08-30 Build site.
html 0e47874 Jeffrey Pullin 2022-05-04 Build site.
html 781c4f8 Jeffrey Pullin 2022-05-02 Build site.
html 8b989e1 Jeffrey Pullin 2022-05-02 Build site.
html 0548273 Jeffrey Pullin 2022-05-02 Build site.
Rmd 50bca7c Jeffrey Pullin 2022-05-02 workflowr::wflow_publish(all = TRUE, republish = TRUE)
html 50bca7c Jeffrey Pullin 2022-05-02 workflowr::wflow_publish(all = TRUE, republish = TRUE)
html 5cc008f Jeffrey Pullin 2022-02-09 Build site.
Rmd d1aca16 Jeffrey Pullin 2022-02-09 Refresh website
html d1aca16 Jeffrey Pullin 2022-02-09 Refresh website
Rmd aca9ad2 Jeffrey Pullin 2021-11-29 Various changes made in the last days before thesis submission
Rmd ddb1eeb Jeffrey Pullin 2021-09-28 Update time analyses
Rmd 16c471e Jeffrey Pullin 2021-09-22 Polish time plots
Rmd e552e95 Jeffrey Pullin 2021-09-21 Extend time analysis
Rmd 17f2a0f Jeffrey Pullin 2021-08-07 Add new plots and analysis for lab meeting 5/8/2021
Rmd ef9f1c7 Jeffrey Pullin 2021-08-02 Add code to plot time of methods on real data
Rmd 864677c Jeffrey Pullin 2021-07-21 Add mini wilcoxon speed analysis
html 61ee246 Jeffrey Pullin 2021-04-13 Build site.
Rmd b5b2a88 Jeffrey Pullin 2021-04-13 Add new results
Rmd 3a4cb2e Jeffrey Pullin 2021-03-16 Update 16/3/2021
html ca82ce0 Jeffrey Pullin 2021-02-16 Build site.
html 2863555 Jeffrey Pullin 2021-02-10 Build site.
Rmd ffe660c Jeffrey Pullin 2021-02-09 Update 9/2/2021

library(tibble)
library(dplyr)
library(ggplot2)
library(tidyr)
library(purrr)
library(forcats)
library(patchwork)
library(stringr)
library(ggrepel)

source(here::here("code", "analysis-utils.R"))
source(here::here("code", "plot-utils.R"))

Aim

Measure the time different methods take to run.

Simulated data

sim_pars <- retrive_simulation_parameters()

num_cells_time_data <- sim_pars %>% 
  filter(sim_label == "num_cells") %>% 
  rowwise() %>% 
  mutate(time = readRDS(full_filename)$time) %>%
  ungroup()

num_clusters_time_data <- sim_pars %>% 
  filter(sim_label == "num_clusters") %>% 
  rowwise() %>% 
  mutate(time = readRDS(full_filename)$time) %>%
  ungroup()

All methods, number of cells

label_pars <- c(
  "scanpy_wilcoxontiecorrect_rankby_abs", 
  "scanpy_t_rankby_abs", 
  "edger_ql",
  "scran_t_any", 
  "nsforest", 
  "scran_wilcox_some", 
  "cepo", 
  "rankcorr_2", 
  "seurat_negbinom", 
  "limma_trend", 
  "glmgampoi", 
  "seurat_t", 
  "seurat_MAST", 
  "scanpy_wilcoxon_rankby_abs",
  "presto"
)

time_by_num_cells_plot <- num_cells_time_data %>% 
  # Remove methods we implemented.
  filter(!(pars %in% c("lm_two_sample", "logfc_abs", "logfc_raw", "random"))) %>% 
  group_by(pars, method, batchCells) %>% 
  summarise(time = mean(time), .groups = "drop") %>% 
  mutate(method = method_lookup[method]) %>% 
  ggplot(aes(x = batchCells, y = time, colour = method)) +
  geom_point() + 
  geom_smooth(se = FALSE, formula = y ~ x, method = "loess", span = 1) +
  geom_text_repel(
    aes(label = if_else(
      pars %in% label_pars & batchCells == 100000, 
      pars_lookup[pars], 
      ""),
    ),
    hjust = -0.1, colour = "black", size = 3, xlim = c(101000, NA)
  ) + 
  external_package_colour + 
  coord_cartesian(xlim = c(1000, 120000)) + 
  scale_x_continuous(
    breaks = c(1000, 25000, 50000, 75000, 100000),
  ) + 
  scale_y_log10(
    breaks = c(1, 10, 60, 600, 3600, 10800, 21600),
    labels = c("1s", "10s", "1m", "10min", "1hr", "3hr", "6hr")
  )  + 
  labs(
    title = "Runtime vs. total number of cells",
    x = "Number of cells", 
    y = "Time (s)", 
    colour = "Package"
  ) + 
  guides(color = "none") + 
  theme_bw()

time_by_num_cells_plot

Version Author Date
5cc008f Jeffrey Pullin 2022-02-09
61ee246 Jeffrey Pullin 2021-04-13
saveRDS(time_by_num_cells_plot, here::here("figures", "raw", "time-num-cells.rds"))

All methods, number of clusters

label_pars <- c(
  "scanpy_wilcoxontiecorrect_rankby_abs", 
  "scanpy_t_rankby_abs", 
  "edger_ql",
  "scran_t_any", 
  "nsforest", 
  "scran_wilcox_some", 
  "cepo", 
  "rankcorr_2", 
  "seurat_negbinom", 
  "limma_trend", 
  "glmgampoi", 
  "seurat_t", 
  "seurat_MAST", 
  "scanpy_wilcoxon_rankby_abs",
  "presto"
)

time_by_num_clusters_plot <- num_clusters_time_data %>% 
  # Remove methods we implemented.
  filter(!(pars %in% c("lm_two_sample", "logfc_abs", "logfc_raw", "random"))) %>% 
  group_by(pars, method, n_clus) %>% 
  summarise(time = mean(time), .groups = "drop") %>% 
  mutate(method = method_lookup[method]) %>% 
  ggplot(aes(x = n_clus, y = time, colour = method)) +
  geom_point() + 
  geom_smooth(se = FALSE, formula = y ~ x, method = "loess", span = 1) +
  external_package_colour + 
  geom_text_repel(
    aes(label = if_else(
      pars %in% label_pars & n_clus == 20,
      pars_lookup[pars], 
      ""),
    ),
    hjust = -0.1, colour = "black", size = 3,  xlim = c(20.5, NA)
  ) + 
  coord_cartesian(xlim = c(5, 24)) + 
  scale_x_continuous(
    breaks = c(5, 10, 15, 20),
  ) + 
  scale_y_log10(
    breaks = c(1, 10, 60, 600, 3600),
    labels = c("1s", "10s", "1m", "10min", "1hr")
  )  + 
  labs(
    title = "Runtime vs. number of clusters",
    x = "Number of clusters", 
    y = "Time (s)", 
    colour = "Package"
  ) + 
  guides(color = "none") + 
  theme_bw()

time_by_num_clusters_plot
Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

saveRDS(time_by_num_clusters_plot, here::here("figures", "raw", "time-num-clusters.rds"))

Specific time values

num_cells_time_data %>% 
 # Remove methods we implemented.
 filter(!(pars %in% c("lm_two_sample", "logfc_abs", "logfc_raw", "random"))) %>% 
 group_by(pars, method, batchCells) %>% 
 summarise(time = mean(time), .groups = "drop") %>% 
 mutate(
   min = time / 60, 
   hour = min / 60
 ) %>% 
 filter(pars %in% c("edger_ql", "presto", 
                    "seurat_wilcox", "scanpy_wilcoxontiecorrect_rankby_abs", 
                    "scran_wilcox_any")) %>% 
 print(n = 40)
# A tibble: 20 × 6
   pars                                method batchCells    time     min    hour
   <chr>                               <chr>       <int>   <dbl>   <dbl>   <dbl>
 1 edger_ql                            edger        1000 4.74e+1 7.90e-1 1.32e-2
 2 edger_ql                            edger       25000 2.56e+3 4.27e+1 7.12e-1
 3 edger_ql                            edger       50000 4.20e+3 7.00e+1 1.17e+0
 4 edger_ql                            edger       75000 7.01e+3 1.17e+2 1.95e+0
 5 edger_ql                            edger      100000 9.51e+3 1.59e+2 2.64e+0
 6 presto                              presto       1000 6.73e-1 1.12e-2 1.87e-4
 7 presto                              presto      25000 1.69e+0 2.82e-2 4.71e-4
 8 presto                              presto      50000 2.82e+0 4.69e-2 7.82e-4
 9 presto                              presto      75000 4.95e+0 8.26e-2 1.38e-3
10 presto                              presto     100000 6.91e+0 1.15e-1 1.92e-3
11 scanpy_wilcoxontiecorrect_rankby_a… scanpy       1000 9.73e-1 1.62e-2 2.70e-4
12 scanpy_wilcoxontiecorrect_rankby_a… scanpy      25000 2.03e+1 3.39e-1 5.65e-3
13 scanpy_wilcoxontiecorrect_rankby_a… scanpy      50000 4.40e+1 7.33e-1 1.22e-2
14 scanpy_wilcoxontiecorrect_rankby_a… scanpy      75000 7.24e+1 1.21e+0 2.01e-2
15 scanpy_wilcoxontiecorrect_rankby_a… scanpy     100000 1.07e+2 1.79e+0 2.98e-2
16 seurat_wilcox                       seurat       1000 8.89e+0 1.48e-1 2.47e-3
17 seurat_wilcox                       seurat      25000 1.57e+2 2.62e+0 4.37e-2
18 seurat_wilcox                       seurat      50000 6.82e+2 1.14e+1 1.89e-1
19 seurat_wilcox                       seurat      75000 1.04e+3 1.74e+1 2.90e-1
20 seurat_wilcox                       seurat     100000 1.32e+3 2.20e+1 3.67e-1

Seurat methods, number of cells

num_cells_time_data %>% 
  filter(method == "seurat") %>% 
  group_by(pars, test.use, batchCells) %>% 
  summarise(time = mean(time), .groups = "drop") %>% 
  mutate(test.use = test.use_lookup[test.use]) %>% 
  ggplot(aes(x = batchCells, y = time, colour = test.use)) +
  geom_jitter(width = 200) + 
  scale_x_continuous(
    breaks = c(1000, 25000, 50000, 75000, 100000)
  ) + 
  scale_y_log10(
    breaks = c(1, 10, 60, 600, 3600, 10800),
    labels = c("1s", "10s", "1m", "10min", "1hr", "3hr")
  )  + 
  labs(
    title = "Runtime vs total number of cells",
    x = "Number of cells", 
    y = "Time (s)", 
    colour = "Parameters"
  ) + 
  theme_bw()

scran methods, number of cells

num_cells_time_data %>% 
  filter(method == "scran") %>% 
  group_by(pars, test.type, pval.type, batchCells) %>% 
  summarise(time = mean(time), .groups = "drop") %>% 
  mutate(scran_pars = paste0(test.type, "_", pval.type)) %>% 
  ggplot(aes(x = batchCells, y = time, colour = scran_pars)) +
  geom_point() + 
  scale_x_continuous(
    breaks = c(1000, 25000, 50000, 75000, 100000)
  ) +  
  labs(
    title = "Runtime vs total number of cells",
    x = "Number of cells", 
    y = "Time (s)", 
    colour = "Parameters"
  ) + 
  theme_bw()

Scanpy methods, number of cells

num_cells_time_data %>% 
  filter(method == "scanpy") %>% 
  group_by(pars, test_use, rankby_abs, batchCells) %>% 
  summarise(time = mean(time), .groups = "drop") %>% 
  mutate(rankby_abs = if_else(rankby_abs == "True", "abs", "raw")) %>% 
  mutate(scran_pars = paste0(test_use, "_", rankby_abs)) %>% 
  ggplot(aes(x = batchCells, y = time, colour = scran_pars)) +
  geom_point() + 
  scale_x_continuous(
    breaks = c(1000, 25000, 50000, 75000, 100000)
  ) +
  labs(
    title = "Runtime vs total number of cells",
    x = "Number of cells", 
    y = "Time (s)", 
    colour = "Parameters"
  ) + 
  theme_bw()

Real data

real_data_data <- retrieve_real_data_parameters() %>% 
  rowwise() %>% 
  mutate(time = readRDS(full_filename)$time) %>%
  ungroup()

pbmc3k

real_data_data %>% 
  filter(data_id == "pbmc3k") %>% 
  filter(!(pars %in% c("lm_two_sample", "random"))) %>% 
  mutate(
    pars = pars_lookup[pars],
    plot_method = method_lookup[method]
  ) %>% 
  mutate(pars = fct_reorder(factor(pars), time)) %>%
  mutate(ms = 1000 * time) %>% 
  ggplot(aes(x = pars, y = ms, colour = plot_method)) + 
  geom_point(alpha = 0.8, size = 3) + 
  external_package_colour + 
  scale_y_log10(
    breaks = c(500, 1000, 10000, 60000, 600000),
    labels = c("0.5s", "1s", "10s", "1m", "10min")
  ) + 
  coord_flip() + 
  labs(
    y = "Time (log scale)", 
    x = "Method",
    title = "pbmc3k data",
    colour = "Package"
  ) + 
  theme_bw()

Lawlor

real_data_data %>% 
  filter(data_id == "lawlor") %>% 
  filter(!(pars %in% c("lm_two_sample", "random"))) %>% 
  mutate(
    pars = pars_lookup[pars],
    plot_method = method_lookup[method]
  ) %>%  
  mutate(pars = fct_reorder(factor(pars), time)) %>%
  mutate(ms = 1000 * time) %>% 
  ggplot(aes(x = pars, y = ms, colour = plot_method)) + 
  geom_point(alpha = 0.8, size = 3) + 
  external_package_colour + 
  scale_y_log10(
    breaks = c(500, 1000, 10000, 60000, 600000),
    labels = c("0.5s", "1s", "10s", "1m", "10min")
  ) + 
  coord_flip() + 
  labs(
    y = "Time (log scale)", 
    x = "Method",
    title = "Lawlor data",
    colour = "Package"
  ) + 
  theme_bw()

Zeisel

real_data_data %>% 
  filter(data_id == "zeisel") %>% 
  filter(!(pars %in% c("lm_two_sample", "random"))) %>% 
  mutate(
    pars = pars_lookup[pars],
    plot_method = method_lookup[method]
  ) %>%   
  mutate(pars = fct_reorder(factor(pars), time)) %>%
  mutate(ms = 1000 * time) %>% 
  ggplot(aes(x = pars, y = ms, colour = plot_method)) + 
  geom_point(alpha = 0.8, size = 3) + 
  external_package_colour + 
  scale_y_log10(
    breaks = c(500, 1000, 10000, 60000, 600000),
    labels = c("0.5s", "1s", "10s", "1m", "10min")
  ) + 
  coord_flip() + 
  labs(
    y = "Time (log scale)", 
    x = "Method",
    title = "Zeisel data",
    colour = "Package"
  ) + 
  theme_bw()

Endothelial

real_data_data %>% 
  filter(data_id == "endothelial") %>% 
  filter(!(pars %in% c("lm_two_sample", "difference_log_fc", "random"))) %>% 
  mutate(
    pars = pars_lookup[pars],
    plot_method = method_lookup[method]
  ) %>%    
  mutate(pars = fct_reorder(factor(pars), time)) %>%
  mutate(ms = 1000 * time) %>% 
  ggplot(aes(x = pars, y = ms, colour = plot_method)) + 
  geom_point(size = 3) + 
  external_package_colour + 
  scale_y_log10(
    breaks = c(1000, 10000, 60000, 600000, 3600000, 18000000),
    labels = c("1s", "10s", "1m", "10min", "1hr", "5hr")
  ) + 
  coord_flip() + 
  labs(
    y = "Time (log scale)", 
    x = "Method",
    title = "Endothelial data", 
    colour = "Package"
  ) + 
  theme_bw()

Zhao

zhao_time <- real_data_data %>% 
  filter(data_id == "zhao") %>% 
  filter(!(pars %in% c("lm_two_sample", "logfc_abs", "logfc_raw", "random"))) %>% 
   mutate(
    pars = pars_lookup[pars],
    plot_method = method_lookup[method]
  ) %>%     
  mutate(pars = fct_reorder(factor(pars), time)) %>%
  mutate(ms = 1000 * time) %>% 
  ggplot(aes(x = pars, y = ms, colour = plot_method)) + 
  geom_point(size = 3) + 
  external_package_colour + 
  scale_y_log10(
    breaks = c(1000, 10000, 60000, 600000, 3600000, 18000000, 43200000),
    labels = c("1s", "10s", "1m", "10min", "1hr", "5hr", "12hr")
  ) + 
  coord_flip() + 
  labs(
    y = "Time (log scale)", 
    x = "Method",
    title = "Zhao data", 
    colour = "Package"
  ) + 
  theme_bw()

zhao_time

saveRDS(zhao_time, here::here("figures", "raw", "zhao-time.rds"))

Overall

overall_time <- real_data_data %>% 
  filter(!(pars %in% c("lm_two_sample", "logfc_abs", "logfc_raw", "random"))) %>% 
  mutate(ms = time * 1000) %>% 
  mutate(log_time = log(ms, base = 10)) %>% 
  mutate(
    plot_method = method_lookup[method], 
    plot_pars = pars_lookup[pars],
    plot_data_id = dataset_lookup[data_id]
  ) %>% 
  mutate(plot_pars = fct_reorder(factor(plot_pars), time)) %>% 
  ggplot(aes(x = plot_data_id, y = plot_pars)) +
  geom_tile(aes(fill = log_time), colour = "black") + 
  scale_fill_distiller(
    breaks = log(c(1000, 10000, 60000, 600000, 3600000, 21600000), base = 10),
    labels = c("1s", "10s", "1m", "10min", "1hr", "6hr"),
    palette = "RdYlBu") + 
  theme_bw() + 
  labs(
    title = "Time across datasets",
    x = "Dataset", 
    y = "Method", 
    fill = "Time",
  ) + 
  theme(
    panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    panel.border = element_blank(),
    axis.ticks.y = element_blank(),
    axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
  )
overall_time

saveRDS(overall_time, here::here("figures", "raw", "overall-time.rds"))

Specific values

real_data_data %>% 
 # Remove methods we implemented.
 filter(!(pars %in% c("lm_two_sample", "logfc_abs", "logfc_raw", "random"))) %>% 
 filter(data_id %in% c("citeseq", "zhao")) %>% 
 mutate(
   min = time / 60, 
   hour = min / 60
 ) %>% 
 select(data_id, time, pars, min, hour) %>% 
 filter(pars %in% c("edger_ql", "presto", "seurat_t",
                    "seurat_wilcox", "scanpy_t_rankby_abs", 
                    "scran_t_any", "scanpy_t")) %>% 
 print(n = 40)
# A tibble: 10 × 5
   data_id      time pars                     min     hour
   <chr>       <dbl> <chr>                  <dbl>    <dbl>
 1 citeseq  1114.    edger_ql             18.6    0.310   
 2 citeseq     2.00  presto                0.0333 0.000555
 3 citeseq     0.999 scanpy_t_rankby_abs   0.0167 0.000278
 4 citeseq   333.    seurat_t              5.56   0.0926  
 5 citeseq   401.    seurat_wilcox         6.69   0.112   
 6 zhao    25429.    edger_ql            424.     7.06    
 7 zhao        6.18  presto                0.103  0.00172 
 8 zhao       13.2   scanpy_t_rankby_abs   0.220  0.00367 
 9 zhao     6441.    seurat_t            107.     1.79    
10 zhao    12862.    seurat_wilcox       214.     3.57    

devtools::session_info()
─ Session info  ──────────────────────────────────────────────────────────────
 hash: person walking: dark skin tone, mage: light skin tone, backhand index pointing right: medium skin tone

 setting  value
 version  R version 4.1.2 (2021-11-01)
 os       Red Hat Enterprise Linux 9.2 (Plow)
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_AU.UTF-8
 ctype    en_AU.UTF-8
 tz       Australia/Melbourne
 date     2024-01-01
 pandoc   2.18 @ /apps/easybuild-2022/easybuild/software/MPI/GCC/11.3.0/OpenMPI/4.1.4/RStudio-Server/2022.07.2+576-Java-11-R-4.1.2/bin/pandoc/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package      * version date (UTC) lib source
 assertthat     0.2.1   2019-03-21 [2] CRAN (R 4.1.2)
 bslib          0.3.1   2021-10-06 [1] CRAN (R 4.1.0)
 cachem         1.0.6   2021-08-19 [1] CRAN (R 4.1.0)
 callr          3.7.0   2021-04-20 [2] CRAN (R 4.1.2)
 cli            3.6.1   2023-03-23 [1] CRAN (R 4.1.0)
 colorspace     2.1-0   2023-01-23 [1] CRAN (R 4.1.0)
 crayon         1.5.1   2022-03-26 [1] CRAN (R 4.1.0)
 DBI            1.1.2   2021-12-20 [1] CRAN (R 4.1.0)
 desc           1.4.0   2021-09-28 [2] CRAN (R 4.1.2)
 devtools       2.4.2   2021-06-07 [2] CRAN (R 4.1.2)
 digest         0.6.29  2021-12-01 [1] CRAN (R 4.1.0)
 dplyr        * 1.0.9   2022-04-28 [1] CRAN (R 4.1.0)
 ellipsis       0.3.2   2021-04-29 [2] CRAN (R 4.1.2)
 evaluate       0.14    2019-05-28 [2] CRAN (R 4.1.2)
 fansi          1.0.4   2023-01-22 [1] CRAN (R 4.1.0)
 farver         2.1.1   2022-07-06 [1] CRAN (R 4.1.0)
 fastmap        1.1.0   2021-01-25 [2] CRAN (R 4.1.2)
 forcats      * 0.5.1   2021-01-27 [2] CRAN (R 4.1.2)
 fs             1.5.2   2021-12-08 [1] CRAN (R 4.1.0)
 generics       0.1.3   2022-07-05 [1] CRAN (R 4.1.0)
 ggplot2      * 3.3.6   2022-05-03 [1] CRAN (R 4.1.0)
 ggrepel      * 0.9.1   2021-01-15 [2] CRAN (R 4.1.2)
 git2r          0.28.0  2021-01-10 [2] CRAN (R 4.1.2)
 glue           1.6.0   2021-12-17 [1] CRAN (R 4.1.0)
 gtable         0.3.0   2019-03-25 [2] CRAN (R 4.1.2)
 here           1.0.1   2020-12-13 [1] CRAN (R 4.1.0)
 highr          0.9     2021-04-16 [2] CRAN (R 4.1.2)
 htmltools      0.5.2   2021-08-25 [1] CRAN (R 4.1.0)
 httpuv         1.6.5   2022-01-05 [1] CRAN (R 4.1.0)
 jquerylib      0.1.4   2021-04-26 [2] CRAN (R 4.1.2)
 jsonlite       1.8.0   2022-02-22 [1] CRAN (R 4.1.0)
 knitr          1.36    2021-09-29 [1] CRAN (R 4.1.0)
 labeling       0.4.2   2020-10-20 [2] CRAN (R 4.1.2)
 later          1.3.0   2021-08-18 [1] CRAN (R 4.1.0)
 lattice        0.20-45 2021-09-22 [2] CRAN (R 4.1.2)
 lifecycle      1.0.1   2021-09-24 [1] CRAN (R 4.1.0)
 magrittr       2.0.3   2022-03-30 [1] CRAN (R 4.1.0)
 Matrix         1.3-4   2021-06-01 [2] CRAN (R 4.1.2)
 memoise        2.0.1   2021-11-26 [1] CRAN (R 4.1.0)
 mgcv           1.8-38  2021-10-06 [2] CRAN (R 4.1.2)
 munsell        0.5.0   2018-06-12 [2] CRAN (R 4.1.2)
 nlme           3.1-153 2021-09-07 [2] CRAN (R 4.1.2)
 patchwork    * 1.1.1   2020-12-17 [2] CRAN (R 4.1.2)
 pillar         1.7.0   2022-02-01 [1] CRAN (R 4.1.0)
 pkgbuild       1.2.0   2020-12-15 [2] CRAN (R 4.1.2)
 pkgconfig      2.0.3   2019-09-22 [2] CRAN (R 4.1.2)
 pkgload        1.2.3   2021-10-13 [2] CRAN (R 4.1.2)
 prettyunits    1.1.1   2020-01-24 [2] CRAN (R 4.1.2)
 processx       3.5.2   2021-04-30 [2] CRAN (R 4.1.2)
 promises       1.2.0.1 2021-02-11 [2] CRAN (R 4.1.2)
 ps             1.7.1   2022-06-18 [1] CRAN (R 4.1.0)
 purrr        * 0.3.4   2020-04-17 [2] CRAN (R 4.1.2)
 R6             2.5.1   2021-08-19 [1] CRAN (R 4.1.0)
 RColorBrewer   1.1-3   2022-04-03 [1] CRAN (R 4.1.0)
 Rcpp           1.0.8.3 2022-03-17 [1] CRAN (R 4.1.0)
 remotes        2.4.2   2021-11-30 [1] CRAN (R 4.1.0)
 rlang          1.0.3   2022-06-27 [1] CRAN (R 4.1.0)
 rmarkdown      2.14    2022-04-25 [1] CRAN (R 4.1.0)
 rprojroot      2.0.3   2022-04-02 [1] CRAN (R 4.1.0)
 rstudioapi     0.14    2022-08-22 [1] CRAN (R 4.1.0)
 sass           0.4.1   2022-03-23 [1] CRAN (R 4.1.0)
 scales         1.2.1   2022-08-20 [1] CRAN (R 4.1.0)
 sessioninfo    1.2.0   2021-10-31 [2] CRAN (R 4.1.2)
 stringi        1.7.6   2021-11-29 [1] CRAN (R 4.1.0)
 stringr      * 1.4.0   2019-02-10 [2] CRAN (R 4.1.2)
 testthat       3.1.0   2021-10-04 [2] CRAN (R 4.1.2)
 tibble       * 3.1.7   2022-05-03 [1] CRAN (R 4.1.0)
 tidyr        * 1.2.0   2022-02-01 [1] CRAN (R 4.1.0)
 tidyselect     1.1.2   2022-02-21 [1] CRAN (R 4.1.0)
 usethis        2.1.3   2021-10-27 [2] CRAN (R 4.1.2)
 utf8           1.2.3   2023-01-31 [1] CRAN (R 4.1.0)
 vctrs          0.4.1   2022-04-13 [1] CRAN (R 4.1.0)
 whisker        0.4     2019-08-28 [2] CRAN (R 4.1.2)
 withr          2.5.0   2022-03-03 [1] CRAN (R 4.1.0)
 workflowr      1.7.0   2021-12-21 [1] CRAN (R 4.1.0)
 xfun           0.31    2022-05-10 [1] CRAN (R 4.1.0)
 yaml           2.3.5   2022-02-21 [1] CRAN (R 4.1.0)

 [1] /home/jpullin/R/x86_64-pc-linux-gnu-library/4.1
 [2] /apps/easybuild-2022/easybuild/software/MPI/GCC/11.3.0/OpenMPI/4.1.4/R/4.1.2/lib64/R/library

──────────────────────────────────────────────────────────────────────────────