Last updated: 2024-01-01

Checks: 7 0

Knit directory: mage_2020_marker-gene-benchmarking/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190102) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2632193. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Renviron
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    .snakemake/
    Ignored:    NSForest/.Rhistory
    Ignored:    NSForest/NS-Forest_v3_Extended_Binary_Markers_Supplmental.csv
    Ignored:    NSForest/NS-Forest_v3_Full_Results.csv
    Ignored:    NSForest/NSForest3_medianValues.csv
    Ignored:    NSForest/NSForest_v3_Final_Result.csv
    Ignored:    NSForest/__pycache__/
    Ignored:    NSForest/data/
    Ignored:    RankCorr/picturedRocks/__pycache__/
    Ignored:    benchmarks/
    Ignored:    config/
    Ignored:    data/cellmarker/
    Ignored:    data/downloaded_data/
    Ignored:    data/expert_annotations/
    Ignored:    data/expert_mgs/
    Ignored:    data/raw_data/
    Ignored:    data/real_data/
    Ignored:    data/sim_data/
    Ignored:    data/sim_mgs/
    Ignored:    data/special_real_data/
    Ignored:    figures/
    Ignored:    logs/
    Ignored:    results/
    Ignored:    weights/

Unstaged changes:
    Deleted:    analysis/expert-mgs-direction.Rmd
    Modified:   smash-fork

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/tpr.Rmd) and HTML (public/tpr.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 9487c1e Jeffrey Pullin 2023-06-17 Add draft of dataset characteristic section analysis
Rmd d3539cb Jeffrey Pullin 2023-06-10 Add ‘blood’ datasets
html fcecf65 Jeffrey Pullin 2022-09-09 Build site.
Rmd 0c2eafc Jeffrey Pullin 2022-09-09 Update website
html af96b34 Jeffrey Pullin 2022-08-30 Build site.
html 2b49665 Jeffrey Pullin 2022-08-29 Build site.
html 97c1be8 Jeffrey Pullin 2022-05-04 Build site.
Rmd 87f0b60 Jeffrey Pullin 2022-05-04 Tweak simulation analysis
html b5045c1 Jeffrey Pullin 2022-05-02 Build site.
Rmd 048156f Jeffrey Pullin 2022-05-02 Tweak analysis outputs
html 048156f Jeffrey Pullin 2022-05-02 Tweak analysis outputs
html 8b989e1 Jeffrey Pullin 2022-05-02 Build site.
html 0548273 Jeffrey Pullin 2022-05-02 Build site.
Rmd 50bca7c Jeffrey Pullin 2022-05-02 workflowr::wflow_publish(all = TRUE, republish = TRUE)
html 50bca7c Jeffrey Pullin 2022-05-02 workflowr::wflow_publish(all = TRUE, republish = TRUE)
html 5cc008f Jeffrey Pullin 2022-02-09 Build site.
Rmd d1aca16 Jeffrey Pullin 2022-02-09 Refresh website
html d1aca16 Jeffrey Pullin 2022-02-09 Refresh website
Rmd 262f46d Jeffrey Pullin 2022-02-08 Update simulation-based TPR analysis
Rmd aca9ad2 Jeffrey Pullin 2021-11-29 Various changes made in the last days before thesis submission
Rmd 98c856a Jeffrey Pullin 2021-09-28 Update analyses
Rmd e3d9f9e Jeffrey Pullin 2021-09-22 Polish tpr analysis
Rmd 27e8a89 Jeffrey Pullin 2021-09-21 Extend tpr analysis
Rmd 17f2a0f Jeffrey Pullin 2021-08-07 Add new plots and analysis for lab meeting 5/8/2021
Rmd 33c015d Jeffrey Pullin 2021-08-04 Fix off by error in rankcorr and run higher lambda values
Rmd 3fa1beb Jeffrey Pullin 2021-08-04 Update analysis code to new marker gene format
Rmd 92d3bf0 Jeffrey Pullin 2021-08-02 Add code to create plots for ECSSC talk
Rmd 15c9978 Jeffrey Pullin 2021-07-25 Update analysis for new simulations
Rmd e4bd7a9 Jeffrey Pullin 2021-07-22 Misc WIP changes to simulations and code
Rmd 74443b4 Jeffrey Pullin 2021-07-13 Update endothelial data processing and simulation outputs
Rmd acc6dd9 Jeffrey Pullin 2021-05-31 Large update
html 61ee246 Jeffrey Pullin 2021-04-13 Build site.
Rmd b5b2a88 Jeffrey Pullin 2021-04-13 Add new results
Rmd 07b49fa Jeffrey Pullin 2021-04-08 Finish rewriting TPR plots to use new framework
Rmd cd9837a Jeffrey Pullin 2021-04-08 Refactor how marker genes are extracted from methods
Rmd be29ac9 Jeffrey Pullin 2021-04-06 Rename tpr-fdr to tpr only

library(tibble)
library(dplyr)
library(ggplot2)
library(tidyr)
library(SingleCellExperiment)
library(scater)
library(forcats)
library(purrr)
library(patchwork)

source(here::here("code", "top-genes.R"))
source(here::here("code", "analysis-utils.R"))
source(here::here("code", "plot-utils.R"))

Aim

To investigate the TPR performance of the different methods on simulated datasets.

metrics_data <- retrive_simulation_parameters() %>% 
  filter(sim_label == "standard") %>% 
  rowwise() %>% 
  mutate(
    mgs_raw = list(readRDS(full_filename)$result), 
    mgs = list(split(mgs_raw, mgs_raw$cluster))
  ) %>% 
  ungroup() %>% 
  unnest_longer(
    col = mgs, 
    values_to = "mgs", 
    indices_to = "cluster"
  ) %>% 
  select(-mgs_raw) %>% 
  mutate(umg_path = here::here(
    "data", "sim_mgs", paste0("mg-", sim_name, "-", data_id, ".rds")) 
  ) %>% 
  rowwise() %>% 
  mutate(true_mgs = list(readRDS(umg_path))) %>% 
  mutate(cluster_2 = paste0("group_", substr(cluster, 6, 6))) %>% 
  mutate(true_mgs = list(true_mgs[[cluster_2]])) %>% 
  dplyr::rename(sel_mgs = mgs) %>% 
  ungroup()
plot_metric <- function(data, 
                        data_id, 
                        n_true = 20, 
                        n_sel = 20, 
                        direction = "up",
                        metric = "recall") {
  
  plot_dataset <- dataset_lookup[data_id]
  
  plot_data <- data %>%
    filter(data_id == !!data_id) %>% 
    filter(sim_label == "standard") %>% 
    expand_grid(n_true = n_true, n_sel = n_sel) %>% 
    rowwise() %>% 
    dplyr::filter(!is.null(sel_mgs)) %>% 
    mutate(
      true_mgs = list(get_top_true_mgs(
        true_mgs, 
        n = n_true, 
        direction = direction,
        sort_by_score = "mean_score")
      ),
      sel_mgs = list(get_top_sel_mgs(
        sel_mgs, 
        n = n_sel, 
        direction = direction)
      ), 
      recall = calculate_recall(sel_mgs$gene, true_mgs$gene),
      precision = calculate_precision(sel_mgs$gene, true_mgs$gene),
      raw_f1_score = (2 * recall * precision) / (recall + precision) 
    ) %>%  
    mutate(f1_score = if_else(is.nan(raw_f1_score), 0, raw_f1_score)) %>% 
    ungroup() %>% 
    mutate(plot_method = method_lookup[method]) %>% 
    mutate(plot_pars = pars_lookup[pars]) %>% 
    mutate(plot_pars = fct_reorder(
      factor(plot_pars), 
      !!sym(metric), 
      .fun = median
    )) %>% 
    select(plot_method, plot_pars, recall, precision, f1_score)
  
    # We remove this so it doesn't get trapped in the ggplot object, hugely 
    # inflating its size.
    rm(data) 
  
    ggplot(plot_data, aes(x = plot_pars, y = !!sym(metric), fill = plot_method)) + 
      geom_boxplot() + 
      coord_flip(ylim = c(0, 1)) + 
      scale_y_continuous(breaks = seq(0, 1, by = 0.2)) +
      package_fill + 
      labs(
        y = metric_lookup[metric], 
        x = "Method", 
        colour = "Package",
        title = paste0(plot_dataset, " dataset based simulations"),
      ) + 
      theme_bw()
}

plot_metric_overall <- function(data,
                                n_true = 20, 
                                n_sel = 20, 
                                direction = "up",
                                metric = "recall") {
 
  plot_metric <- metric_lookup[metric]
  
  plot_data <- data %>% 
    mutate(n_true = n_true, n_sel = n_sel, direction = direction) %>% 
    rowwise() %>% 
    dplyr::filter(!is.null(sel_mgs)) %>% 
    mutate(
      true_mgs = list(get_top_true_mgs(
        true_mgs, 
        n = n_true, 
        direction = direction,
        sort_by_score = "mean_score")
      ),
      sel_mgs = list(get_top_sel_mgs(
        sel_mgs, 
        n = n_sel, 
        direction = direction)
      ), 
      recall = calculate_recall(sel_mgs$gene, true_mgs$gene),
      precision = calculate_precision(sel_mgs$gene, true_mgs$gene),
      f1_score = (2 * recall * precision) / (recall + precision) 
    ) %>% 
    mutate(f1_score = if_else(recall == 0 & precision == 0, 0, f1_score)) %>%  
    ungroup() %>% 
    group_by(pars, data_id, method) %>% 
    summarise(!!sym(metric) := median(!!sym(metric)), .groups = "drop") %>% 
    mutate(
      plot_method = method_lookup[method], 
      plot_pars = pars_lookup[pars],
      plot_data_id = dataset_lookup[data_id]
    ) %>% 
    mutate(plot_pars = fct_reorder(factor(plot_pars), !!sym(metric)))
  
  rm(data)
  
  ggplot(plot_data, aes(x = plot_data_id, y = plot_pars)) +
    geom_tile(aes(fill = !!sym(metric)), colour = "black") + 
    scale_fill_distiller(palette = "RdYlBu", limits = c(0, 1)) + 
    theme_bw() + 
    labs(
      title = paste0(plot_metric, " across simulations"),
      x = "Dataset", 
      y = "Method", 
      fill = plot_metric,
    ) + 
    theme(
      panel.grid.major = element_blank(),
      panel.grid.minor = element_blank(),
      panel.border = element_blank(),
      axis.ticks.y = element_blank(),
      axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
    )
}

Results

pbmc3k data

plot_metric(metrics_data, "pbmc3k", n_true = 5, n_sel = 5, metric = "recall")

plot_metric(metrics_data, "pbmc3k", n_true = 5, n_sel = 5, metric = "precision")

plot_metric(metrics_data, "pbmc3k", n_true = 20, n_sel = 20, metric = "recall")

plot_metric(metrics_data, "pbmc3k", n_true = 20, n_sel = 20, metric = "precision")

plot_metric(metrics_data, "pbmc3k", n_true = 40, n_sel = 40, metric = "recall")

plot_metric(metrics_data, "pbmc3k", n_true = 40, n_sel = 40, metric = "precision")

Lawlor data

plot_metric(metrics_data, "lawlor", n_true = 5, n_sel = 5, metric = "recall")

plot_metric(metrics_data, "lawlor", n_true = 5, n_sel = 5, metric = "precision")

plot_metric(metrics_data, "lawlor", n_true = 20, n_sel = 20, metric = "recall")

plot_metric(metrics_data, "lawlor", n_true = 20, n_sel = 20, metric = "precision")

plot_metric(metrics_data, "lawlor", n_true = 40, n_sel = 40, metric = "recall")

plot_metric(metrics_data, "lawlor", n_true = 40, n_sel = 40, metric = "precision")

Zeisel data

plot_metric(metrics_data, "zeisel", n_true = 5, n_sel = 5, metric = "recall")

plot_metric(metrics_data, "zeisel", n_true = 5, n_sel = 5, metric = "precision")

zeisel_recall <- plot_metric(metrics_data, "zeisel", n_true = 20, n_sel = 20, 
                             metric = "recall") + 
  ggtitle("Recall")
zeisel_precision <- plot_metric(metrics_data, "zeisel", n_true = 20, n_sel = 20, 
                                metric = "precision") + 
  ggtitle("Precision") + 
  theme(axis.title.y = element_blank())
zeisel_f1_score <- plot_metric(metrics_data, "zeisel", n_true = 20, n_sel = 20, 
                               metric = "f1_score") + 
  ggtitle("F1 score") + 
  theme(axis.title.y = element_blank())

zeisel_sim_all_metrics <- zeisel_recall + zeisel_precision + zeisel_f1_score + 
  plot_layout(guides = "collect") + 
  plot_annotation(tag_levels = "a") &
  theme(plot.tag = element_text(size = 18))

ggsave(
  here::here("figures", "final", "zeisel-sim-all-metrics.pdf"),
  zeisel_sim_all_metrics,
  width = 16,
  height = 8,
  units = "in"
)

Paul data

plot_metric(metrics_data, "paul", n_true = 5, n_sel = 5, metric = "recall")

plot_metric(metrics_data, "paul", n_true = 20, n_sel = 20, metric = "recall")

plot_metric(metrics_data, "paul", n_true = 40, n_sel = 40, metric = "recall")

Endothelial data

plot_metric(metrics_data, "endothelial", n_true = 5, n_sel = 5, metric = "recall")

plot_metric(metrics_data, "endothelial", n_true = 5, n_sel = 5, metric = "precision")

plot_metric(metrics_data, "endothelial", n_true = 20, n_sel = 20, metric = "recall")

plot_metric(metrics_data, "endothelial", n_true = 20, n_sel = 20, metric = "precision")

SMART-seq3 data

plot_metric(metrics_data, "ss3_pbmc", n_true = 5, n_sel = 5, metric = "recall")

plot_metric(metrics_data, "ss3_pbmc", n_true = 5, n_sel = 5, metric = "precision")

plot_metric(metrics_data, "ss3_pbmc", n_true = 20, n_sel = 20, metric = "recall")

plot_metric(metrics_data, "ss3_pbmc", n_true = 20, n_sel = 20, metric = "precision")

plot_metric(metrics_data, "ss3_pbmc", n_true = 40, n_sel = 40, metric = "recall")

plot_metric(metrics_data, "ss3_pbmc", n_true = 40, n_sel = 40, metric = "precision")

Overall

overall_recall <- plot_metric_overall(metrics_data, n_true = 20, n_sel = 20, 
                                      direction = "up", metric = "recall") 
overall_recall

saveRDS(overall_recall, here::here("figures", "raw", "overall-recall.rds"))
overall_precision <- plot_metric_overall(metrics_data, n_true = 20, n_sel = 20, 
                                         direction = "up", metric = "precision") 

overall_precision

saveRDS(overall_precision, here::here("figures", "raw", "overall-precision.rds"))
overall_f1_score <- plot_metric_overall(metrics_data, n_true = 20, n_sel = 20, 
                                        direction = "up", metric = "f1_score")  
overall_f1_score

saveRDS(overall_f1_score, here::here("figures", "raw", "overall-f1-score.rds"))

Different number of genes selected.

n_genes_selected_5 <- plot_metric_overall(metrics_data, n_true = 5, n_sel = 5, 
                                          direction = "up", 
                                          metric = "f1_score") + 
  ggtitle("5 selected genes")
n_genes_selected_5

n_genes_selected_10 <- plot_metric_overall(metrics_data, n_true = 10, 
                                           n_sel = 10, direction = "up", 
                                           metric = "f1_score") + 
  ggtitle("10 selected genes")
n_genes_selected_10

n_genes_selected_20 <- plot_metric_overall(metrics_data, n_true = 20, 
                                           n_sel = 20, direction = "up", 
                                           metric = "f1_score") + 
  ggtitle("20 selected genes")
n_genes_selected_20

n_genes_selected_40 <- plot_metric_overall(metrics_data, n_true = 40, 
                                           n_sel = 40, direction = "up", 
                                           metric = "f1_score") + 
  ggtitle("40 selected genes")
n_genes_selected_40

n_genes_selected <- n_genes_selected_5 + n_genes_selected_10 + 
  n_genes_selected_20 + n_genes_selected_40 + 
  plot_layout(guides = "collect") + 
  plot_annotation(tag_levels = "a") &
  theme(plot.tag = element_text(size = 18))

n_genes_selected

ggsave(
  here::here("figures", "final", "n-genes-results.pdf"),
  n_genes_selected,
  width = 14,
  height = 16,
  units = "in"
)

devtools::session_info()
─ Session info  ──────────────────────────────────────────────────────────────
 hash: leg, rat, flag: Tuvalu

 setting  value
 version  R version 4.1.2 (2021-11-01)
 os       Red Hat Enterprise Linux 9.2 (Plow)
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_AU.UTF-8
 ctype    en_AU.UTF-8
 tz       Australia/Melbourne
 date     2024-01-01
 pandoc   2.18 @ /apps/easybuild-2022/easybuild/software/MPI/GCC/11.3.0/OpenMPI/4.1.4/RStudio-Server/2022.07.2+576-Java-11-R-4.1.2/bin/pandoc/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version  date (UTC) lib source
 assertthat             0.2.1    2019-03-21 [2] CRAN (R 4.1.2)
 beachmat               2.10.0   2021-10-26 [1] Bioconductor
 beeswarm               0.4.0    2021-06-01 [2] CRAN (R 4.1.2)
 Biobase              * 2.54.0   2021-10-26 [1] Bioconductor
 BiocGenerics         * 0.40.0   2021-10-26 [1] Bioconductor
 BiocNeighbors          1.12.0   2021-10-26 [1] Bioconductor
 BiocParallel           1.28.3   2021-12-09 [1] Bioconductor
 BiocSingular           1.10.0   2021-10-26 [1] Bioconductor
 bitops                 1.0-7    2021-04-24 [2] CRAN (R 4.1.2)
 bslib                  0.3.1    2021-10-06 [1] CRAN (R 4.1.0)
 cachem                 1.0.6    2021-08-19 [1] CRAN (R 4.1.0)
 callr                  3.7.0    2021-04-20 [2] CRAN (R 4.1.2)
 cli                    3.6.1    2023-03-23 [1] CRAN (R 4.1.0)
 colorspace             2.1-0    2023-01-23 [1] CRAN (R 4.1.0)
 crayon                 1.5.1    2022-03-26 [1] CRAN (R 4.1.0)
 DBI                    1.1.2    2021-12-20 [1] CRAN (R 4.1.0)
 DelayedArray           0.20.0   2021-10-26 [1] Bioconductor
 DelayedMatrixStats     1.16.0   2021-10-26 [1] Bioconductor
 desc                   1.4.0    2021-09-28 [2] CRAN (R 4.1.2)
 devtools               2.4.2    2021-06-07 [2] CRAN (R 4.1.2)
 digest                 0.6.29   2021-12-01 [1] CRAN (R 4.1.0)
 dplyr                * 1.0.9    2022-04-28 [1] CRAN (R 4.1.0)
 ellipsis               0.3.2    2021-04-29 [2] CRAN (R 4.1.2)
 evaluate               0.14     2019-05-28 [2] CRAN (R 4.1.2)
 fansi                  1.0.4    2023-01-22 [1] CRAN (R 4.1.0)
 farver                 2.1.1    2022-07-06 [1] CRAN (R 4.1.0)
 fastmap                1.1.0    2021-01-25 [2] CRAN (R 4.1.2)
 forcats              * 0.5.1    2021-01-27 [2] CRAN (R 4.1.2)
 fs                     1.5.2    2021-12-08 [1] CRAN (R 4.1.0)
 generics               0.1.3    2022-07-05 [1] CRAN (R 4.1.0)
 GenomeInfoDb         * 1.30.0   2021-10-26 [1] Bioconductor
 GenomeInfoDbData       1.2.7    2021-12-03 [1] Bioconductor
 GenomicRanges        * 1.46.1   2021-11-18 [1] Bioconductor
 ggbeeswarm             0.6.0    2017-08-07 [2] CRAN (R 4.1.2)
 ggplot2              * 3.3.6    2022-05-03 [1] CRAN (R 4.1.0)
 ggrepel                0.9.1    2021-01-15 [2] CRAN (R 4.1.2)
 git2r                  0.28.0   2021-01-10 [2] CRAN (R 4.1.2)
 glue                   1.6.0    2021-12-17 [1] CRAN (R 4.1.0)
 gridExtra              2.3      2017-09-09 [2] CRAN (R 4.1.2)
 gtable                 0.3.0    2019-03-25 [2] CRAN (R 4.1.2)
 here                   1.0.1    2020-12-13 [1] CRAN (R 4.1.0)
 highr                  0.9      2021-04-16 [2] CRAN (R 4.1.2)
 htmltools              0.5.2    2021-08-25 [1] CRAN (R 4.1.0)
 httpuv                 1.6.5    2022-01-05 [1] CRAN (R 4.1.0)
 IRanges              * 2.28.0   2021-10-26 [1] Bioconductor
 irlba                  2.3.5    2021-12-06 [1] CRAN (R 4.1.0)
 jquerylib              0.1.4    2021-04-26 [2] CRAN (R 4.1.2)
 jsonlite               1.8.0    2022-02-22 [1] CRAN (R 4.1.0)
 knitr                  1.36     2021-09-29 [1] CRAN (R 4.1.0)
 labeling               0.4.2    2020-10-20 [2] CRAN (R 4.1.2)
 later                  1.3.0    2021-08-18 [1] CRAN (R 4.1.0)
 lattice                0.20-45  2021-09-22 [2] CRAN (R 4.1.2)
 lifecycle              1.0.1    2021-09-24 [1] CRAN (R 4.1.0)
 magrittr               2.0.3    2022-03-30 [1] CRAN (R 4.1.0)
 Matrix                 1.3-4    2021-06-01 [2] CRAN (R 4.1.2)
 MatrixGenerics       * 1.6.0    2021-10-26 [1] Bioconductor
 matrixStats          * 0.62.0   2022-04-19 [1] CRAN (R 4.1.0)
 memoise                2.0.1    2021-11-26 [1] CRAN (R 4.1.0)
 munsell                0.5.0    2018-06-12 [2] CRAN (R 4.1.2)
 patchwork            * 1.1.1    2020-12-17 [2] CRAN (R 4.1.2)
 pillar                 1.7.0    2022-02-01 [1] CRAN (R 4.1.0)
 pkgbuild               1.2.0    2020-12-15 [2] CRAN (R 4.1.2)
 pkgconfig              2.0.3    2019-09-22 [2] CRAN (R 4.1.2)
 pkgload                1.2.3    2021-10-13 [2] CRAN (R 4.1.2)
 prettyunits            1.1.1    2020-01-24 [2] CRAN (R 4.1.2)
 processx               3.5.2    2021-04-30 [2] CRAN (R 4.1.2)
 promises               1.2.0.1  2021-02-11 [2] CRAN (R 4.1.2)
 ps                     1.7.1    2022-06-18 [1] CRAN (R 4.1.0)
 purrr                * 0.3.4    2020-04-17 [2] CRAN (R 4.1.2)
 R6                     2.5.1    2021-08-19 [1] CRAN (R 4.1.0)
 RColorBrewer           1.1-3    2022-04-03 [1] CRAN (R 4.1.0)
 Rcpp                   1.0.8.3  2022-03-17 [1] CRAN (R 4.1.0)
 RCurl                  1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)
 remotes                2.4.2    2021-11-30 [1] CRAN (R 4.1.0)
 rlang                  1.0.3    2022-06-27 [1] CRAN (R 4.1.0)
 rmarkdown              2.14     2022-04-25 [1] CRAN (R 4.1.0)
 rprojroot              2.0.3    2022-04-02 [1] CRAN (R 4.1.0)
 rstudioapi             0.14     2022-08-22 [1] CRAN (R 4.1.0)
 rsvd                   1.0.5    2021-04-16 [1] CRAN (R 4.1.0)
 S4Vectors            * 0.32.3   2021-11-21 [1] Bioconductor
 sass                   0.4.1    2022-03-23 [1] CRAN (R 4.1.0)
 ScaledMatrix           1.2.0    2021-10-26 [1] Bioconductor
 scales                 1.2.1    2022-08-20 [1] CRAN (R 4.1.0)
 scater               * 1.22.0   2021-10-26 [1] Bioconductor
 scuttle              * 1.4.0    2021-10-26 [1] Bioconductor
 sessioninfo            1.2.0    2021-10-31 [2] CRAN (R 4.1.2)
 SingleCellExperiment * 1.16.0   2021-10-26 [1] Bioconductor
 sparseMatrixStats      1.6.0    2021-10-26 [1] Bioconductor
 stringi                1.7.6    2021-11-29 [1] CRAN (R 4.1.0)
 stringr                1.4.0    2019-02-10 [2] CRAN (R 4.1.2)
 SummarizedExperiment * 1.24.0   2021-10-26 [1] Bioconductor
 testthat               3.1.0    2021-10-04 [2] CRAN (R 4.1.2)
 tibble               * 3.1.7    2022-05-03 [1] CRAN (R 4.1.0)
 tidyr                * 1.2.0    2022-02-01 [1] CRAN (R 4.1.0)
 tidyselect             1.1.2    2022-02-21 [1] CRAN (R 4.1.0)
 usethis                2.1.3    2021-10-27 [2] CRAN (R 4.1.2)
 utf8                   1.2.3    2023-01-31 [1] CRAN (R 4.1.0)
 vctrs                  0.4.1    2022-04-13 [1] CRAN (R 4.1.0)
 vipor                  0.4.5    2017-03-22 [2] CRAN (R 4.1.2)
 viridis                0.6.2    2021-10-13 [1] CRAN (R 4.1.0)
 viridisLite            0.4.2    2023-05-02 [1] CRAN (R 4.1.0)
 whisker                0.4      2019-08-28 [2] CRAN (R 4.1.2)
 withr                  2.5.0    2022-03-03 [1] CRAN (R 4.1.0)
 workflowr              1.7.0    2021-12-21 [1] CRAN (R 4.1.0)
 xfun                   0.31     2022-05-10 [1] CRAN (R 4.1.0)
 XVector                0.34.0   2021-10-26 [1] Bioconductor
 yaml                   2.3.5    2022-02-21 [1] CRAN (R 4.1.0)
 zlibbioc               1.40.0   2021-10-26 [1] Bioconductor

 [1] /home/jpullin/R/x86_64-pc-linux-gnu-library/4.1
 [2] /apps/easybuild-2022/easybuild/software/MPI/GCC/11.3.0/OpenMPI/4.1.4/R/4.1.2/lib64/R/library

──────────────────────────────────────────────────────────────────────────────